Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
f=3^x/x^2=e^(x*ln(3)-2*ln(x))
f`=e^(x*ln(3)-2*ln(x)) * (ln(3) - 2/x) = 3^x/x^2 * (ln(3) - 2/x) = 3^x/x^2 * ln(3) - 2*3^x/x^3
f`(x=-1) =3^(-1)/(-1)^2 * ln(3) - 2*3^(-1)/(-1)^3 = ln(3) / 3 + 2/3 ~ 1,032871
2)
f=8ln(2,3x)=8ln(2,3)+8ln(x)
f`=-8/x
f`(x=2)=-8/2=-4
3)
f=log[2](3-2x) = ln(3-2x)/ln(2)
f`=1/((3-2x)*ln(2)) * (-2)=1/((x-1,5)*ln(2))
f`(x=1)=1/((1-1,5)*ln(2)) = -2/ln(2)
4) integrar [-2;2] (5^(x/4)+sin(pi*x)) dx = integrar_1 + integrar_2
integrar_1 = integrar [-2;2] (5^(x/4)) dx = 5^(x/4) * 4/ln(5) [подстановка от -2 до 2] =(5^(2/4)-5^(-2/4)) * 4/ln(5) =(корень(5)-1/корень(5))) * 4/ln(5)=корень(5)*(1-1/5)) * 4/ln(5) = 16*корень(5) / (5*ln(5) )
integrar_2 =0 (интеграл от нечетной функции в симметричных пределах)
integrar_2 =integrar [-2;2] (sin(pi*x)) dx =-cos(pi*x)/pi [-2;2] [подстановка от -2 до 2] =-cos(pi*2)/pi - -cos(-pi*2)/pi =0