Отрезок AB можно рассматривать как гипотенузу. Для этого представим дополнительную точку C с координатами абсциссы от точки А и ординатой точки В, это будет С(4;-2). Длина АС=8-(-2)=10, ВС=4-2=2. По теореме Пифагора AB²=AC²+BC²=10²+2²=104 АВ=√104=√4*26=2√26 Координаты середины АВ-- абсцисса равноудалена от абсцисс точек А и С это будет 3, а ордината по построению видно это тоже 3 Для определения принадлежности точек прямой подставим координаты в уравнение А(4;8)------ x-y+4=0; 4-8+4=0 равенство верное, точка принадлежит В(2;-2)----- 2-(-2)+4=0; 8=0 равенство неверное, точка не принадлежит
(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
ответ:все легко
Смотри фото
Там все есть
Объяснение: