Объяснение:
х км/ч — скорость течения реки,
(х + 20) км/ч — собственная скорость теплохода ( скорость в стоячей воде)
Скорость движения теплохода по течению реки будет:
х+(х+20)=2х+20 км/час
Скорость движения теплохода против течения реки будет :
(х+20)-х=20 км/час
Значит можем найти время движения по течению и против течения:
время движения по течению
60 / (2х + 20) час.
против течения
60 / 20 = 3 час.
Если всего за 5,5 часа , то
5,5 - 3 = 2,5 час. - движение по течению
Отсюда :
60 / (2х + 20) = 2,5.
2,5 * (2х + 20)=60
5х + 50=60
5х=10
х = 2 км/час скорость течения реки
2 + 20 = 22 км/ч. собственная скорость теплохода ( скорость в стоячей воде)
|x-1|-|x+2|>-3
Раскроем модули.
Приравняем каждое подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак:
x-1=0 x+2=0
x=1 x=-2
Нанесем эти значения Х на числовую прямую:
(-2)(1)
Мы получили три промежутка.Найдем знаки каждого подмодульного выражения на каждом промежутке:
(-2)(1)
x-1 - - +
x+2 - + +
Раскроем модули на каждом промежутке:
1)x<-2
На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком:
-x+1+x+2>-3
3>-3 - неравенство верное при любых Х на промежутке x<-2
2) -2<=x<1
На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком:
-x+1-x-2>-3
-2x-1>-3
-2x>1-3
-2x>-2
x<1
С учетом промежутка -2<=x<1 получаем x e [-2;1)
3)x>=1
На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака:
x-1-x-2>-3
-3>-3
Неравенство не имеет решений на этом промежутке
Соединим решения 1 и 2 промежутков и получим такой ответ:
x e(-беск.,1)