Пройденный путь вычисляется по формуле: S = v*x ,v-скорость, х —время
Тогда за хч проехал 60хкм,а осталось 240-60х
1)Функция движения будет :
у = 240 — 60х = 60*(4-х)
у = 60*(4-1) = 60*3 = 180 км- останется проехать через час
у = 60*(4-2) = 60*2 = 120 км- останется проехать через 2 часа
у=60*(4-3)=60км- останется проехать через 3часа
у= 60*(4-4) = 0 км- останется проехать через 4часа2)Функция убывающая, т.к. при возрастании х, у убывает
3)Единицы измерения : по х час за 1см,а по игреку 20км за 1см
ответ: 1) -1; 2) 1.
Объяснение:
1) При x⇒0 выражение в скобках представляет собой неопределённость вида ∞-∞. Приводя обе дроби к общему знаменателю, получаем в скобках выражение -sin²(x)/[x*(x+sin²(x))]=-sin(x)/x*sin(x)/[x+sin²(x)]. Предел первого множителя есть ни что иное, как взятый со знаком "минус" первый замечательный предел, поэтому предел этого множителя равен -1. Ко второму множителю sin(x)/[x+sin²(x)] применим правило Лопиталя. Находя производные числителя и знаменателя, получаем выражение cos(x)/[1+2*sin(x)*cos(x)]=cos(x)/[1+sin(2*x)]. Предел этого выражения при x⇒0 равен 1, поэтому искомый предел равен -1*1=-1.
2) Выражение, предел которого нужно найти, при x⇒+0 представляет собой неопределённость вида ∞⁰. Так как при x⇒0 бесконечно малые величины sin(x) и x эквивалентны, то при вычислении предела можно заменить одну на другую. В данном случае заменим sin(x) на x, и тогда выражение, предел которого нужно найти, примет вид y=(1/x)ˣ. Взяв натуральный логарифм от этого выражения, получим выражение z=x*ln(1/x)=ln(1/x)/[1/x]. Полагая теперь 1/x=t, получим выражение z=ln(t)/t. Так как при x⇒0+ t⇒∞, то это выражение представляет собой неопределённость вида ∞/∞, для раскрытия которой применим правило Лопиталя. Производная числителя [ln(t)]'=1/t, производная знаменателя t'=1, поэтому предел выражения lim[ln(t)/t]=lim(z) при t⇒∞ равен 0/1=0. А так как z=ln(y), то lim(z)=ln[lim(y)], откуда lim(y)=e^lim(z)=e^0=1.
1) ответ правильно?
Объяснение:
это элементарно)