У двоих сплавах сами міді й цинку відносяться як 5:2 і 3:4. Скільки треба взяти кілограмів першого сплаву та скільки другого, щоб, сплавивши їх, отримати 28 кг нового сплаву з рівним вмістом міді й цинку
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.
1. Площадь прямоугольника - 250 см² Одна сторона - 2,5а см² Вторая сторона - а см² 2,5а*а=250 (a>0) 2,5а²=250 a²=100 a=√100 a=10 (см) - вторая сторона прямоугольника 2,5а=2,5*10=25 (см) - первая сторона прямоугольника 25>10 ответ: Большая сторона прямоугольника равна 25 см
2. x²+15x+q=0 x₁-x₂=3 q=? Для решения задачи применяем теорему Виета. Составим систему(решаем методом сложения): {x₁+x₂=-15 {x₁-x₂=3 => 2x₁=-12 x₁=-6 -6+x₂=-15 x₂=-9 q=x₁*x₂=-6*(-9)=54 ответ: 54
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру
уравнение в действительных корнях.
Рассмотрим функцию
. Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию
. Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение![ax^2+bx+c=0,~~ a\ne0](/tpl/images/0551/5048/3b41c.png)
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.