Объяснение:
Из второго уравнения выведем m через k: k = -6-m и подставим в первое уравнение.
Получается: -0,2*(-6-m) = 20
разделим обе части на -0,2
-6-m = -100
-m = -100 + 6
-m = -94
умножим обе части на -1
m = 94
Подставим полученное m в выведенное уравнение:
k = -6 - 94
k = -100
Объяснение:
Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k=tg α.
Угол наклона прямой равняется 0 только при параллельности ох и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0. Значит, вид уравнения будет y=b.
Если угол наклона прямой y=kx+b острый, тогда выполняются условия 0<α<
π
2
или 0°<α<90°. Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию tg α>0, причем имеется возрастание графика.
Если α=
π
2
, тогда расположение прямой перпендикулярно ох. Равенство задается при равенства x=c со значением с, являющимся действительным числом.
Если угол наклона прямой y=kx+b тупой, то соответствует условиям
π
2
<α<π или 90°<α<180°, значение углового коэффициента k принимает отрицательное значение, а график убывае
Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔
⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения).
Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.
Объяснение:
k=-100; m=94
Объяснение:
k=20/-0.2
k=-100
m+k=-6
m+(-100)=-6
m=100-6
m=94