Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Пример вы привели бредовый. Мало того, что забыли плюсы поставить, так еще и посчитали неправильно. 21 + 12 + 25 + 52 + 15 + 51 = 176, а никак не 215. Ладно, давайте решать задачу. У нас есть трехзначное число 100a+10b+c, из его цифр нужно составить двузначные числа (их всего 6) и сложить их. 10a+b+10b+a+10a+c+10c+a+10b+c+10c+b = 22a+22b+22c = 100a+10b+c Значит, это число должно делиться на 22, причем частное должно быть равно сумме цифр самого числа. 100a + 10b + c = 22*(a + b + c) Сумма трех однозначных не больше 3*9=27, поэтому имеет смысл проверять числа не больше 22*27 = 594. Это числа: 110=22*5, 132=22*6, 154=22*7, 176=22*8, 198=22*9, 220=22*10, 242=22*11, 264=22*12, 286=22*13, 308=22*14, 330=22*15, 352=22*16, 374=22*17, 396=22*18, 418=22*19, 440=22*20, 462=22*21, 484=22*22, 506=22*23, 528=22*24, 550=22*25, 572=22*26, 594=22*27. Из них удачные числа: 132=22*(1+3+2), 264=22*(2+6+4), 396=22*(3+9+6).
У рівнянні 3х–у = 18 виразити у через х:
−y = 18−3x
y = −18+3x
y = 3x−18
Відповідь: В. у = 3х – 18.