Пусть для определенности в каждом сосуде было по 1 л раствора, в котором x л кислоты. Тогда в 1 сосуде после 1 переливания будет
x*(1 - m)/1 л кислоты. А после 2 переливания будет
x*(1 - m)^2 л кислоты.
Точно также во 2 сосуде после 2 переливания будет
x*(1 - 2m)^2 л кислоты.
И по условию эти объемы относятся друг к другу как 26/16 = 13/8.
x*(1 - m)^2 : [x*(1 - 2m)^2] = 13/8
(1 - m)^2 : (1 - 2m)^2 = 13/8
8(1 - m)^2 = 13(1 - 2m)^2
После раскрытия квадратов получаем:
8m^2 - 16m + 8 = 52m^2 - 52m + 13
44m^2 - 36m + 5 = 0
D/4 = 18^2 - 44*5 = 324 - 220 = 104
m1 = (18 - √104)/44 ~ 0,1773; m2 = (18 + √104)/44 ~ 0,6408
Но во 2 случае объем 2m = 1,2816 > 1 л, поэтому не подходит.
ответ: 0,1773 часть объема раствора
Но мне кажется, что в задаче ошибка, должно быть 25/16.
Тогда решение намного проще.
(1 - m)^2 : (1 - 2m)^2 = 25/16
(1 - m) : (1 - 2m) = 5/4
4(1 - m) = 5(1 - 2m)
4 - 4m = 5 - 10m
6m = 1
m = 1/6 часть объема раствора
конечно, решается...
это биквадратное уравнение ("дважды" квадратное...)
вводим замену (новую переменную) а = с^2
и получаем квадратное уравнение относительно переменной а
a^2 - 26a - 160 = 0
D = 26*26 + 4*160 = 4*(169+160) = 4*329
а1 = (26 - 2V329)/2 = 13 - V329
а2 = (26 + 2V329)/2 = 13 + V329
возвращаемся к замене...
с^2 = 13 - V329 ---не имеет смысла (квадрат числа не может быть отрицательным числом...)
с^2 = 13 + V329
c1 = V(13 + V329)
c2 = -V(13 + V329)
это решение (хоть и числа "некрасивые" ---если нет ошибки в условии...)
Объяснение:
1) 3×4 = 12
2) 9×4 = 36
3) 12+36 = 48