1. На полке стоят 9 разных книг. Саша и Маша берут из них по одной книге. Сколькими может быть осуществлен такой выбор? 2. Сколько различных двухбуквенных кодов с различными буквами можно составить с букв a, b, c, d, e?
пусть v автобуса=х, тогда v автомобиля=х+20. 10минут=⅙ часа, а 5 минут=1/12часа, и если автомобиль потратил меньше времени на ⅙ и 1/12, то автобус потратил больше, именно на это время. Автобус потратил на поездку 30/х, а
автомобиль: 30/(х+20). Зная разницу во времени составим уравнение:
30/х-30/(х+20)=⅙+1/12 здесь найдём общий знаменатель в обеих частях уравнения и получим:
(30х+600-30х)/(х(х+20))=(2+1)/12
600/(х²+20х)=3/12
600/(х²+20х)=1/4
х²+20х=600×4
х²+20х=2400
х²+20х-2400=0
D=400-4×(-2400)=400+9600=10000
x1= (-20-100)/2= -120/2= -60
x2=( -20+100)/2=80/2=40
Итак: х1 нам не подходит поскольку скорость не может быть отрицательной поэтому мы используем х2=40. Итак: v автобуса, =40км/ч, тогда v автомобиля=40+20=60км/ч
А) Раскрываем скобки и решаем. 4+4x<=x-2 3x<=-6 x<=-2. б) Перенесем правую часть в левую и получим (2x-1-10x-1)/5-3x>0 (-8x-2)/5-3x>0 Домножим на 5. -8x-2-15x>0 -2>23x -2/23>x. в)Две дроби поставим под общий знаменатель. Для этого можно сделать перекрестие или же просто домножить вторую дробь на два. (X^2-5)/6 +(2(x+1))/2*3>=2 (x^2-5+2x+1)/6>=2 (x^2+2x-3)/6>=2 Домножаем на 6. x^2+2x-3>=12 x^2+2x-15>=0 Получаем и решаем квадратное уравнение и получаем корни. x1=-5 и x2=3. Отложим эти две точки на оси X. Получаем три промежутка. x<=-5,x>=5 x<=3 и x>=3. Берем любые числа из каждого промежутка и подставляем в квадратное уравнение. Если число удовлетворяет условию, значит промежуток найден, если нет, значит ищем дальше. Тут же ответ x<=-5 x>=3. -5<=x<=3 не подходит, так как если ты подставишь в число в уравнение, неравенство окажется неверным.
v автомобиля=60км/ч
Объяснение:
пусть v автобуса=х, тогда v автомобиля=х+20. 10минут=⅙ часа, а 5 минут=1/12часа, и если автомобиль потратил меньше времени на ⅙ и 1/12, то автобус потратил больше, именно на это время. Автобус потратил на поездку 30/х, а
автомобиль: 30/(х+20). Зная разницу во времени составим уравнение:
30/х-30/(х+20)=⅙+1/12 здесь найдём общий знаменатель в обеих частях уравнения и получим:
(30х+600-30х)/(х(х+20))=(2+1)/12
600/(х²+20х)=3/12
600/(х²+20х)=1/4
х²+20х=600×4
х²+20х=2400
х²+20х-2400=0
D=400-4×(-2400)=400+9600=10000
x1= (-20-100)/2= -120/2= -60
x2=( -20+100)/2=80/2=40
Итак: х1 нам не подходит поскольку скорость не может быть отрицательной поэтому мы используем х2=40. Итак: v автобуса, =40км/ч, тогда v автомобиля=40+20=60км/ч