Квадратный трёхчлен типа ах² + вх + с нельзя разложить на множители, если уравнение ах² + вх + с = 0 не имеет решений.
Проверим, имеют ли решения заданные трёхчлены, находя дискриминант D
1) x²+3x-1
решаем уравнение x²+3x-1 = 0
D = 9 + 4 = 13 (два решения)
2) x²+3x+1
решаем уравнение x²+3x+1 = 0
D = 9 - 4 = 5 (два решения)
3) x²+3x+7
решаем уравнение x²+3x+7 = 0
D = 9 - 28 = -19 (нет решения)
4) x²+6x-13
решаем уравнение x²+6x-13 = 0
D = 36 +52 = 88 (два решения)
ответ: квадратный трёхчлен 3) x²+3x+7 нельзя разложить на линейные множители
Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13.
Придя в 10 утра в В, он разворачивается и едет обратно.
В А он возвращается в 14.
Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги.
А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус,
который в 10 вышел из В.
Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги.
А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги.
И ровно в 11 он проедет 3/4 дороги и встретит первый автобус.
И дальше все точно также.
Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.