План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке 4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума. начали? 1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)² 2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0 -2х² - 4х -3 +х² = 0 -х² -4х -3 = 0 х² + 4х + 3 = 0 х1 = -1; х2 = -3 3) -∞ + -3 - -1 + +∞ 4) функция возрастает при х∈( -∞; -3)∨(-1; +∞) функция убывает при х ∈(-3; -1) х = -3 точка мак4симума х = -1 точка минимума.
5 arccos 1\2 + 3 arcsin (-корень из 2\2) Оба значения табличные для cos и sin
sin ( 4 arccos ( - 1\2) - 2 arcctg корень из 3\3) Оба значения табличные для cos и ctg
6 sin^2x + 5cosx-7=0 Сначала использовать основное тригонометрическое тождество Это обыкновенное квадратное уравнение, в котором переменной является cos x , n,m∈Z
2sin^2x + sinx cosx - 3 cos^2x=0 Проверить, что не является корнем ( на ноль делить нельзя), а потом все уравнение почленно разделить на Не корень, можно делить Обыкновенное квадратное уравнение с переменной tg x n,m ∈ Z