Это задача на вычисление площади фигуры через определенный интеграл 1) Надо построить рисунок фигуры площадь которой надо найти а) Графиком функции y=-x^2+2x -будет являться парабола ветви которой направлены вниз (a<0; a=-1) Координаты вершины параболы x=-2/(2(-1))=1 y(1)=1 Точки пересечения параболы с осью абсцисс, найдем решив квадратное уравнение 2x-x^2=0 x(2-x)=0; x=0 x=2 -это числа будут так же пределами интегрирования, (так как y=0 -уравнение оси абсцисс) Площадь искомой фигуры находится интернированием Интеграл вычислен во вложении. Площадь фигуры 4/3 (eд.кв)
Чтобы представить данное произведение двух скобок в виде многочлена, необходимо раскрыть скобки. Сначала первое слагаемое первой скобки умножаем на каждый член второй скобки, затем то же самое проделываем со вторым слагаемым первой скобки: (х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6 Приведём подобные слагаемые: х³-36*6 Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид: х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов: а³-с³=(а-с)(а²+ас+с²) Наше выражение как раз имеет такой вид: (х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
1) Надо построить рисунок фигуры площадь которой надо найти
а) Графиком функции y=-x^2+2x -будет являться парабола ветви которой направлены вниз (a<0; a=-1)
Координаты вершины параболы
x=-2/(2(-1))=1
y(1)=1
Точки пересечения параболы с осью абсцисс, найдем решив квадратное уравнение
2x-x^2=0 x(2-x)=0; x=0 x=2 -это числа будут так же пределами интегрирования, (так как y=0 -уравнение оси абсцисс) Площадь искомой фигуры находится интернированием Интеграл вычислен во вложении. Площадь фигуры 4/3 (eд.кв)