Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
Читайте материал по теме "график линейной функции и построение эскиза графика линейной функции" По теореме, графиком функции вида y=k*x+b является прямая, тангенс угла наклонной которой к оси абсцисс равен k, проходящая через точку (0, b). Важно, что график – это абстрактное понятие, реально его построить невозможно. Но можно построить эскиз графика. Чтобы построить эскиз графика функции y=2x-4, предварительно строим угол с вершиной в начале координат, одна из сторон которого находится на оси абсцисс, а другая – в 1-й четверти координатной плоскости, и проходит через точки (x, y), удовлетворяющие отношению y=2*x, например, (1, 2). Потом строим прямую, на которой лежит эта сторона угла. Чтобы получить эскиз графика, нужно построить прямую, параллельную уже построеной, проходящую через точку (0, -4) координатной плоскости. Это и есть эскиз графика.
Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
ответ: 10 ч.
Поставь лучший ответ