75°
Объяснение:
По условию считаем, что каждый друзей видит свой участок стены и друзья вместе контролируют только четвертую часть стены комнаты, что означает 90° (рисунок приложен). По обозначению эта стена дуга BE= дуга EC + дуга СВ = 90°.
Угол обзора одного из друзей ∠CDE=10°, а у другого ∠ВАС=20°, а их сумма ∠ВАС+∠CDE=10°+20°=30°.
Нужно определить градусную меру щели КМ, т.е. дуги КМ.
Применим следующую теорему о секущих:
Угол между двумя секущими, проведенными из одной точки, равен полу разности большей и меньшей высекаемых ими дуг.
Тогда ∠ВАС=(дуга СВ - дуга КМ)/2 и ∠CDE=(дуга EC - дуга КМ)/2.
Поэтому
∠ВАС+∠CDE=(дуга СВ - дуга КМ)/2+(дуга EC - дуга КМ)/2=
=(дуга EC + дуга СВ - 2•дуга КМ)/2=(90°-2•дуга КМ)/2
или же
(90°-2•дуга КМ)/2=30°
90°-2•дуга КМ = 60°
2•дуга КМ = 150°
дуга КМ = 150° : 2 = 75°.
ответ: cos(γ)=0,925, γ≈22°.
Объяснение:
Пусть АВ=2 см, AC=4 см и BC=5 см. Пусть α, β, γ - углы соответственно при вершинах A, B, C треугольника. Для нахождения косинусов углов используем теорему косинусов:
1. BC²=AB²+AC²-2*AB*AC*cos(α), откуда следует уравнение 25=4+16-2*2*4*cos(α), или 25=20-16*cos(α). Отсюда 16*cos(α)=-5 и cos(α)=-5/16. Тогда α=arccos(-5/16)≈108°.
2. AC²=AB²+BC²-2*AB*BC*cos(β), откуда следует уравнение 16=4+25-2*2*5*cos(β), или 16=29-20*cos(β). Отсюда 20*cos(β)=13 и cos(β)=13/20. Тогда β=arccos(13/20)≈49°.
3. AB²=AC²+BC²-2*AC*BC*cos(γ), откуда следует уравнение 4=16+25-2*4*5*cos(γ), или 4=41-40*cos(γ). Отсюда 40*cos(γ)=37 и cos(γ)=37/40. Тогда γ=arccos(37/40)≈22°
Проверка: сумма углов треугольника должна быть равна 180°. В нашем случае α+β+γ≈108°+49°+22°=179°≈180°, так что углы найдены верно.
Таким образом, наименьшим углом является γ. Его косинус равен 37/40=0,925, а его градусная величина - ≈22°.