У скриньці лежать чорні і білі кульки, причому кількість чорних кульок дорівнює a, а кількість білих на одну менша від кількості чорних. Яка ймовірність того, що що одна навмання взята зі скриньки кулька буде білою?
Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
А+ 1/а ≥2 (а·а+1) / а ≥ 2 обе части умножаешь на знаменатель а а²+1≥ 2·а а²-2а +1≥0 Сначала приравняй к нулю, найди корни через дискриминант а²-2а +1=0 Д= b²-4ac= (-2)²-4·1·1= 0 значит корень один! а = (-b)/ 2a= 2/2 =1 Рисуй луч, лтложи на нём точку а= 1 ( корень)
1⇒
В первом интервале (от -∞ до 1) возьми пробную точку, например 0, подставь в нерав-во а+ 1/а ≥2 0 +1/0 ≥2 неверно,на ноль делить нельзя далее возьми проб точку из интервала от 1 до +∞,например 2 подставь в нерав-во 2+1/2≥2 верно, значит ответ буде, учитывая, что на ноль делить нельзя Х∈ от 1 до +∞, включая 1, так как неравенство нестрогое ≥
по условию это число равно:
5х+4=6у+5
5х-6у=5-4
5х-6у=1
5х=6у+1
5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6
Подбираем числа делящиеся на 5:
15=14+1, не подходит, т. к.14 не делится на 6
25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно.
30=29+1 - нет
35=34+1 - нет
40= 39+1- нет
45= 44+1 - нет
50= 49+1 - нет
55=54+1 - да.
Тогда задуманное число 55+4=59.
59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.