tg20°*tg40°*tg60°*tg80°=
=tg20°*(tg60-20°)*tg60°*tg(60°+20°)=
= [tg20°*tg(60°-20°)tg(60°+20°)]*tg60°=
=[tg20°*((sin60°-20°)*sin(60°+20°)/(cos(60°-20°)cos(60°+20°))]*√3 =
=[tg20°*(√3/2 *cos20° -1/2 * sin20°)(√3/2 *cos20° +1/2 * sin20°) :
(1/2*cos20°+√3/2 *sin20°)(1/2*cos20°-√3/2 *sin20°)]*√3 =
=[tg20°*(3/4*cos²20°-1/4sin²20°)/(1/4*cos20°-3/4sin20°)]*√3 =
=[(sin20°/cos20°)*(3cos²20°-sin²20°)/(cos²20°-3sin²20°)]*√3=
=[(3cos²20°*sin20°-sin³20°)/(cos³20°-3sin²20°cos20°)]*√3=
=(sin3*20°)/cos(3*20°)*√3= (sin60°)/(cos60°)*√3 = tg60°*√3 =√3*√3=3
График
Точки пересечения с осью ОХ:
Графики функций
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.