Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
4/7 = 0,5714...
121/196 = 0,6173...
5/7 = 0,7143...
z = x*y
1. Найдем частные производные.
2. Решим систему уравнений.
y = 0
x = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = 0
y = 0
Откуда y = 0
Данные значения y подставляем в выражение для x. Получаем: x = 0
Количество критических точек равно 1.
M1(0;0)
3. Найдем частные производные второго порядка.
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(0;0)
AC - B2 = -1 < 0, то глобального экстремума нет.
Вывод: Глобального экстремума нет.