М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Xomawq
Xomawq
28.10.2021 17:02 •  Алгебра

График функции у = 2х + b проходит через точку с координатами (-2; 10). Найдите b .

👇
Ответ:
Брежний
Брежний
28.10.2021

b=-2x+y

Объяснение:

Hogyfoxgkofhf

4,5(8 оценок)
Открыть все ответы
Ответ:
innamatvijchuk
innamatvijchuk
28.10.2021
Всё очень просто.

Для начала убедимся, что корней действительно нет.
Найдём дискриминант:
D = b² - 4ac = 1 - 16 = -15; -15 < 0.

Раз уж дискриминант отрицательный, тогда тут может быть 2 варианта: либо решений нет, либо их бесконечное множество.

Рассмотрим функцию, представленную в левой части неравенства.
Данная функция представлена квадратным многочленом вида: ax² + bx + с. Графиком данной функции  является парабола.

Ветви параболы направлены ВВЕРХ, если а > 0, и ВНИЗ если а < 0.
В нашем случае ветви направлены вверх. Так как корней нет, значит парабола не пересекает ось Х.

Наша парабола расположена НАД осью х, все её точки больше нуля.
Любое значение х удовлетворяет условию.

ответ: х ∈ R.
4х^2-x+1> 0 там нет корне ,но как то надо решить
4,4(27 оценок)
Ответ:
Аиляра
Аиляра
28.10.2021

Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:

\sin\alpha\cos\beta = \dfrac{\sin\left(\alpha + \beta\right) + \sin\left(\alpha - \beta\right)}{2}

В нашем случае получается:

\sin 2x\cdot\cos2x = \dfrac{\sin\left(2x + 2x\right) + \sin\left(2x - 2x\right)}{2} = \dfrac{\sin4x + \sin0}{2} = \boxed{\dfrac{\sin4x}{2}}

Итак, от y = \sin2x\cos2x мы перешли к  y = \dfrac{\sin4x}{2} . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: \underline{f(x) = f\left(x + T\right)} , где T - это и есть этот период. В нашем случае получается вот так:

\boxed{\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x + T\right)}{2}}

Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что T мы изменять не можем, так как это переменная, которую нам надо найти. Зато x мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять \boldsymbol{x = 0}. Нам известно, что \sin0 = 0, и вся левая часть в него превратится. Получится вот так:

\dfrac{\sin\left(4\cdot 0\right)}{2} = \dfrac{\sin4\left(0+T\right)}{2}dfrac{\sin0}{2} = \dfrac{\sin4T}{2}dfrac{\sin4T}{2} = 0

Теперь просто решаем обычное тригонометрическое уравнение и находим T.

\dfrac{\sin4T}{2} = 0sin4T = 04T = \pi kboxed{T = \dfrac{\pi k}{4}}\ \ ,\, k\in\mathbb{Z}

Итак, вот мы к этому и пришли. Возникает вопрос, что делать с k? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как k\in\mathbb{Z}, то k = \{...\, ,-2,-1,0,1,2,...\}. Положительное число должно быть больше нуля, и очевидно, что \dfrac{\pi k}{4} 0  при k \geqslant 1. Поэтому подставляем наше первое значение: k = 1. При нём получаем:

T_1 = \dfrac{\pi \cdot 1}{4} = \dfrac{\pi}{4}

Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству f\left(x\right) = f\left(x+T_1\right).

\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x+\frac{\pi}{4}\right)}{2}dfrac{\sin4x}{2} = \dfrac{\sin\left(4x +\pi\right)}{2}

Согласно формуле приведения, \sin\left(\pi + \alpha\right) = -\sin\alpha, отсюда имеем:

\dfrac{\sin4x}{2} = -\dfrac{\sin4x}{2}

Равенство не выполнено, значит,  \dfrac{\pi}{4} не является периодом данной функции. Проверяем дальше, k = 2.

T_2 = \dfrac{\pi\cdot 2}{4} = \dfrac{\pi}{2}

Точно так же подставляем в f(x) = f\left(x + T_2\right).

\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x + \frac{\pi}{2}\right)}{2}dfrac{\sin4x}{2} = \dfrac{\sin\left(4x + 2\pi\right)}{2}

По формуле приведения \sin\left(2\pi + \alpha\right) = \sin\alpha, поэтому:

\boxed{\dfrac{\sin4x}{2} = \dfrac{\sin4x}{2}}

А потому T_2 = \dfrac{\pi}{2}  и является искомым периодом.

ответ: В)

4,8(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ