1)x^2+9x+8 (x+1)(x+8) (x+8)
==
3x^2+8x+5 3(x+1)(x+1 2/3) 3x+5
x^2+9x+8=0 3x^2+8x+5=0
D= 8^2-4*3*5=64-60=4
x1+x2=-9| -8(+)-))2
x1,2=
|-8;-1 6
x1x2=8 | x1=-1 ; x2=-1 2/3
2)
a)x(x+3)-4(x-5)=7(x+4)-8
x^2+3x-4x+20=7x+28-8
x^2-8x=0
x(x-8)=0
x=0 или х-8=0
х=8
б)2x^4-9x+4=0
D=(-9)^2-4*2*4=81-32=49
9(+(-))7
x1,2=
4
x1=4; x2=0.5
√(5+√21)=1/2(√14+√6)
Остальные точно такие же. В последнем представить, как квадрат разности. Порешай по этому образцу.
Объяснение:
√(5+√21);
Необходимо избавиться от внешнего радикала. Для этого представить выражение под радикалом в виде квадрата суммы:
√(a²+2ab+b²)=√(a+b)²=l a+b l (по модулю, потому что под квадратным корнем выражение должно быть положительным.
Вот и превратим рациональное число в сумму квадратов, а иррвциональное - в удвоенное произведение:
a²+b²=5;
2ab=√21;
Решаем:
2ab=√21
b=√21/(2a);
а≠0
Подставляем:
a²+(√21/2a)²=5;
a²+21/4a²=5
Биквадратное:
4a⁴+21=5*4a²;
4a⁴-20a²+21=0;
делаем замену:
a²=z
4z²-20z+21=0;
D=400-336=64
z₁₂=1/8(20±8);
z₁=28/8=7/2; z₂=12/8=3/2;
a²=z
a²₁₂=7/2; a₁₂=±√(7/2)
a²₃₄=3/2; a₃₄=±√(3/2);
Всего четыре корня. Берем, например, первый
b=√21/2a;
b=√21/(2√(7/2))=√(21*2)/√28=√(3*7*2)/4*7)=√(3/2);
Проверка:
√(√(7/2))²+2√(7/2)√(3/2)+(√(3/2)²)=
7/2+2√(21/4)+3/2=5+√21; Правильно!
Продолжаем:
√(√(7/2))²+2√(7/2)√(3/2)+(√(3/2)²)=√(√(7/2)+√(3/2))²=
l√(7/2)+√(3/2)l=√(7/2)+√(3/2)=1/(√2)(√7+√3)=1/2((√2)(√7+√3))=1/2(√14+√6)
Функция определена, если в ней не присутствует деление на ноль.
x + 9 ≠ 0
x ≠ -9
Отсюда область определения:
(-Б;-9)∪(-9;+Б)