n(n+1) = 25k+1 ; рассмотрим остатки от деления числа n на 5 :
1) если n = 5m , то левая часть кратна 5 , а правая нет
2) если n = 5m+1 , то n(n+1) = (5m+1)·(5m+2) = 25m²+15m +2
25m²+15m +2 = 25k+1 или : 25m²+15m - 25k = -1 , равенство
невозможно , так как левая часть кратна 5 , а правая нет
3) если n = 5m+2, то n(n+1) = (5m+2)·(5m+3) = 25m²+25m +6 ,
25m²+25m +6 = 25k +1 или : 5m² +5m -5k = - 1 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
4) если n = 5m+3 , то n(n+1) = (5m+3)·(5m+4) = 25m² + 35m +12
25m² + 35m +12 = 25k+1 ⇒ 25m² + 35m -25k = -11 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
5) если n = 5m+4 , то n(n+1) = (5m+4)·(5m+5) = 5( m+1)(5m+4)
5( m+1)(5m+4) = 25k +1 , равенство невозможно ,
так как левая часть кратна 5 , а правая нет
n(n+1) = 25k+1 ; рассмотрим остатки от деления числа n на 5 :
1) если n = 5m , то левая часть кратна 5 , а правая нет
2) если n = 5m+1 , то n(n+1) = (5m+1)·(5m+2) = 25m²+15m +2
25m²+15m +2 = 25k+1 или : 25m²+15m - 25k = -1 , равенство
невозможно , так как левая часть кратна 5 , а правая нет
3) если n = 5m+2, то n(n+1) = (5m+2)·(5m+3) = 25m²+25m +6 ,
25m²+25m +6 = 25k +1 или : 5m² +5m -5k = - 1 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
4) если n = 5m+3 , то n(n+1) = (5m+3)·(5m+4) = 25m² + 35m +12
25m² + 35m +12 = 25k+1 ⇒ 25m² + 35m -25k = -11 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
5) если n = 5m+4 , то n(n+1) = (5m+4)·(5m+5) = 5( m+1)(5m+4)
5( m+1)(5m+4) = 25k +1 , равенство невозможно ,
так как левая часть кратна 5 , а правая нет
ответ: V = 6; N = -27.
Объяснение:
1. По теореме Виета, сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком:
x1 + x2 = -b = -V, (1)
а произведение корней - свободному члену:
x1 * x2 = c = N. (2)
2. Из уравнений (1) и (2) найдем значения V и N:
V = -(x1 + x2);
V = -(-9 + 3) = 6;
N = x1 * x2;
N = -9 * 3 = -27.
ответ: V = 6; N = -27.