Пусть Х-длина прямоугольника, У-ширина.
Тогда периметр
2*(Х + У) = 80
У = 40 - Х
Площадь прямоугольника
S = Х*У = Х*(40 - Х) = 40*Х - Х^2
Добавим 400 и вычтем 400:
S = 400 - 400 + 40*Х - Х^2 = 400 - (400 - 40*Х + Х^2) =
= 400 - (Х - 20)^2
Выражение (Х - 20)^2 >= 0,
если (Х - 20)^2 > 0, то S < 400,
если (Х - 20)^2 = 0, то S = 400
Максимальное значение достигатся при (Х - 20)^2 = 0,
то есть при Х=20.
Значит У = 40 - Х = 20.
ответ: максимальное значение площади достигается, когда длина
прямоугольника равна ширине и равна 20 см, то есть прямоугольник - квадрат со стороной 20 см.
Объяснение:
Пусть для определенности в каждом сосуде было по 1 л раствора, в котором x л кислоты. Тогда в 1 сосуде после 1 переливания будет
x*(1 - m)/1 л кислоты. А после 2 переливания будет
x*(1 - m)^2 л кислоты.
Точно также во 2 сосуде после 2 переливания будет
x*(1 - 2m)^2 л кислоты.
И по условию эти объемы относятся друг к другу как 26/16 = 13/8.
x*(1 - m)^2 : [x*(1 - 2m)^2] = 13/8
(1 - m)^2 : (1 - 2m)^2 = 13/8
8(1 - m)^2 = 13(1 - 2m)^2
После раскрытия квадратов получаем:
8m^2 - 16m + 8 = 52m^2 - 52m + 13
44m^2 - 36m + 5 = 0
D/4 = 18^2 - 44*5 = 324 - 220 = 104
m1 = (18 - √104)/44 ~ 0,1773; m2 = (18 + √104)/44 ~ 0,6408
Но во 2 случае объем 2m = 1,2816 > 1 л, поэтому не подходит.
ответ: 0,1773 часть объема раствора
Но мне кажется, что в задаче ошибка, должно быть 25/16.
Тогда решение намного проще.
(1 - m)^2 : (1 - 2m)^2 = 25/16
(1 - m) : (1 - 2m) = 5/4
4(1 - m) = 5(1 - 2m)
4 - 4m = 5 - 10m
6m = 1
m = 1/6 часть объема раствора