Дана функция у= х²- 2х - 3.
График её - парабола ветвями вверх.
Находим её вершину: хо = -в/2а = 2/(2*1) = 1.
уо = 1 - 2 - 3 = -4.
В точке (1; -4) находится минимум функции.
а) промежутки возрастания и убывания функции:
убывает х ∈ (-∞; 1),
возрастает х ∈ (1; +∞).
б) наименьшее значение функции: в точке (1; -4) находится минимум функции уmin = -4.
в) при каких значениях х у > 0.
Для этого надо найти точки пересечения графиком оси Ох
(при этом у = 0).
х²- 2х - 3 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
Функция (то есть у) больше 0 при х ∈ (-∞; -1) ∪ (3; +∞)
Объяснение:
Удачи тебе
1024
Объяснение:
берем все возможные комбинации:
1 к 9, а с учетом что 10 возможных учебников то 10 вариаций
2 к 8 = 45 вариаций( 10 на первой позиции умножаем на 9 во второй и делим на 2 из-за повторений)
3 к 7 = 120 вариаций(10*9*8 и делим на 6)
4 к 6 = 210 вариаций (10*9*8*7 и делим на 24(2*3*4))
5 к 5 = 252 вариации (10*9*8*7*6 и делим на (2*3*4*5) все из за повторений, нам же не надо чтоб считалось разный порядок но на одной и той же фирме)
и теперь мы умножаем все кроме 5 к 5 на 2, т.к. тогда мы посчитали только в сторону 1 фирмы, а теперь и в сторону второй
выходит:
10*2+45*2+120*2+210*2+252=20+90+240+420+252=110+660+252=770+252=1022
точно быть уверенным в этом ответе не могу, но на мое мнение так должно решаться
редактированная часть:
узнав ответ из учебника в комментарии мы поняли что не хватает еще 2 вариантов:
0 учебников в 1 фирме и 0 учебников во второй
по-этому прибавляем еще 2