М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ксееее
Ксееее
07.07.2020 21:11 •  Алгебра

Реши квадратное уравнение 2x2−9x+9=0.

Корни: x1 =
; x2 =

👇
Ответ:
tolyupa2000
tolyupa2000
07.07.2020

x1=-3

x2=-32

вот решение

4,5(29 оценок)
Открыть все ответы
Ответ:
chernecov1977
chernecov1977
07.07.2020
Пусть d и a - решения этого уравнения. Тогда их можно считать взаимно простыми, т.к. иначе можно разделить обе части на квадрат их наибольшего общего делителя.
Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится  на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.
4,7(86 оценок)
Ответ:
Vampir181
Vampir181
07.07.2020
Исследовать функцию: f(x)= \frac{x^2+1}{2x}
    • Область определения функции:
               x\ne 0\\ D(f)=(-\infty;0)\cup(0;+\infty)
• Точки пересечения с осью Ох и Оу:
     Точки пересечения с осью Ох: нет.
     Точки пересечения с осью Оу: Нет.
• Периодичность функции.
     Функция  не периодическая.
• Критические точки, возрастание и убывание функции:
    1. Производная функции:
f'(x)= \frac{(x^2+1)'\cdot 2x-(x^2+1)\cdot(2x)'}{(2x)^2} = \frac{x^2-1}{x^2}
    2. Производная равна 0.
f'(x)=0;\,\,x^2-1=0;\,\,\,\,\Rightarrow\,\,\,\,x=\pm1

___-__(-1)____+__(0)____-___(1)___+___

х=-1 - точка минимума
х=1 - точка минимума

f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум

Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).

• Точка перегиба:
  f''(x)= \frac{(x^2-1)'2x^2-(x^2-1)\cdot(2x^2)'}{(2x^2)^2} = \frac{1}{x^3}
Очевидно что точки перегиба нет, т.к. f''(x)\ne 0

• Вертикальные асимптоты: x=0.

• Горизонтальные асимптоты: \lim_{x\to \pm \infty} f(x)=\pm \infty

• Наклонные асимптоты: \lim_{x \to \infty} ( \frac{1}{2x} +0.5x)=0.5x

График приложен
Исследовать функцию и составить график (x^2+1)/2x расписать!
4,5(75 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ