Определение: Квадратным уравнением называется уравнение вида ax²+bx+c,где x - переменная, a, b, c - постоянные (числовые) коэффициенты.
В общем случае решение квадратных уравнений сводится к нахождению дискриминанта (математики ввели себе такой термин для упрощения решения квадратных уравнений). По мимо этого, корни можно найти по теореме Виета, но вот доказать, имеет ли уравнение корни или нет по ней, к сожалению, нельзя.
Формула дискриминанта: D=b²-4ac, откуда a,b, с - это коэффициенты из уравнения.
Если D>0 (положительный), то уравнение имеет два корня. Если D=0, то один корень. Если D<0 (отрицательный), то уравнение корней не имеет.
Поэтому всё задание сводится к нахождению дискриминанта:
x²-10x+27=0
a=1 (если возле переменной не стоит никакое число (например, 2, 3, -10 и т.д.), то подразумевается, что там спряталась единица) b=-10 c=27
Подставим эти коэффициенты в формулу дискриминанта. D=(-10)²-4×27×1=100-108=-8 (число -8 отрицательное, поэтому уравнение корней не имеет)
x²+x+1=0 a=1, b=1, c=1 D=b²-4ac=1²-4×1×1=1-4=-3 (-3 отрицательное число, поэтому уравнение корней не имеет)
Задание №1. 1.(-1,5+4-2,5)(-6) -1.5+4=2.5 2.5-2.5=0 В первой скобке будет 0. 0 нельзя умножать на другое число, следовательно ответ:0
2. =0,2 0,25 Скобка первая: (0,2-0,25)=-0,05 Решим вторую скобку: -1,6-3,3=-4,9 -4,9+5=0,1 Делим первую на вторую: -0,05:0,1=-0,5 ответ: -0,5
Задание №2.
1. 2(х-1)=3(2х-1) Первая скобка: умножаем 2 на каждый множитель и получается: 2х-2= Тоже самое и со второй скобкой: 6х-1 Получается: 2х-2=6х-1 Все числа с "х" переносим в правую сторону, а обычные числа в левую. Получается: 2х-6х=2-1(Главное помнить,что при переносе числа через знак "равно" знак числа меняется на противоположный.) Решаем уравнение: 2х-6х=2-1 -4х=1 х= х=-0,25 ответ: -0,25
2. 3-5(х-1)=х-2 Раскрываем скобки: 3-5х+1=х-2 "х" переносим в права, а обычные числа в лево: -5х-х=-3-1-2 -6х=-6 х=6 ответ: 6
4. приравняем обе части к общему знаменателю( у 3 и 2 это 6): с "х" перенесем в права, обычные числа в лево: умножим крест - на - крест. получим: 0,5*6=-х*1 3=-х х=-3 ответ: -3
В общем случае решение квадратных уравнений сводится к нахождению дискриминанта (математики ввели себе такой термин для упрощения решения квадратных уравнений). По мимо этого, корни можно найти по теореме Виета, но вот доказать, имеет ли уравнение корни или нет по ней, к сожалению, нельзя.
Формула дискриминанта: D=b²-4ac,
откуда a,b, с - это коэффициенты из уравнения.
Если D>0 (положительный), то уравнение имеет два корня.
Если D=0, то один корень.
Если D<0 (отрицательный), то уравнение корней не имеет.
Поэтому всё задание сводится к нахождению дискриминанта:
x²-10x+27=0
a=1 (если возле переменной не стоит никакое число (например, 2, 3, -10 и т.д.), то подразумевается, что там спряталась единица)
b=-10
c=27
Подставим эти коэффициенты в формулу дискриминанта.
D=(-10)²-4×27×1=100-108=-8 (число -8 отрицательное, поэтому уравнение корней не имеет)
x²+x+1=0
a=1, b=1, c=1
D=b²-4ac=1²-4×1×1=1-4=-3 (-3 отрицательное число, поэтому уравнение корней не имеет)