1) 3x^2-7x+2=0
D=b^2-4ac
D=49-24=25
x1=-b+√D/2a => x1=7+5/6=2
x2=-b-√D/2a => x2=7-5/6=1/3
ответ: 2 и 1/3
2) x^2-23x+112=0
D=529-448=81
x1=23+9/2=16
x2=23-9/2=7
ответ: 16 и 7
3) 4x^2-20x+25=0
D=400-400=0
x=20/8=2,5
ответ: 2,5
4) 2x^2-5x-18=0
D=25+144=169
x1=5+13/4=4,5
x2=5-13/4=-2
ответ: 4,5 и -2
1) 7x^2-x-8=0
D=1+224=225
x1=1+15/14=8/7
x2=1-15/14=-1
ответ: 8/7 и -1
2) 6x^2+x-7=0
D=1+168=169
x1=-1+13/12=1
x2=-1-13/12=-7/6
ответ: 1 и -7/6
3) 3x^2-14x+15=0
x1=196-180=16
x1=14+4/6=3
x2=14-4/6=5/3
ответ: 3 и 5/3
4)2x^2+5x-12=0
D=25+96=121
x1=-5+11/4=1,5
x2=-5-11/4=-4
ответ: 1,5 и -4
если только одну, то
например
3) Решите уравнение: 1-5-11-...-х=-207
-5-11-...-х=-207-1=-208
5+11+...+x=208
5, 11, это арифметическая прогрессия с первым членом 5 и разницей 11-5=6 арифметической прогрессии
и последним членом -x
5+11+...+x=208
сумма прогрессии по формуле
S=(a[1]+a[n])/2*n
n=(a[n]-a[1])/d+1
n=(x-5)/6+1
(5+x)/2*((x-5)/6+1)=208
(x+5)(x-5+6)=208*2*6
(x+5)(x+1)=2496
x^2+6x+5-2496=0
x^2+6x-2491=0
D=100^2
x1=(-6-100)/2<0 - очевидно не подходит, так х положительное целое
х2=(-6+100)/2=47
ответ 47
главная идея задачи - использование арифметической прогрессии и ее свойств
ну и по ходу уметьрешать квадратное уравнение