М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EgorKolomytsev
EgorKolomytsev
30.05.2021 17:01 •  Алгебра

Доказать что равенство верно
Во вложений

👇
Ответ:
Сағат
Сағат
30.05.2021

Так понятнее? Аналогично с произведением косинуса на синус.


Доказать что равенство верно Во вложений
Доказать что равенство верно Во вложений
Доказать что равенство верно Во вложений
Доказать что равенство верно Во вложений
4,8(86 оценок)
Открыть все ответы
Ответ:
arhivnaykr
arhivnaykr
30.05.2021

(-\infty; 1)\cup (1;2)

Объяснение:

Перенесём один из корней влево, а одну из семёрок — вправо следующим образом:

7^{ax^2-2x}-7^{x^2-1}=\sqrt[7]{2x-ax^2}-\sqrt[7]{1-x^2} \\7^{ax^2-2x}-\sqrt[7]{2x-ax^2}=7^{x^2-1}-\sqrt[7]{1-x^2}\\7^{ax^2-2x}+\sqrt[7]{ax^2-2x} =7^{x^2-1}+\sqrt[7]{x^2-1}

Рассмотрим функцию f(x)=7^x+\sqrt[7]{x}. Она представляет собой сумму двух монотонно возрастающих функций (показательная и функция корня седьмой степени), следовательно она также монотонно возрастает. Значит, каждому аргументу соответствует ровно одно значение функции, то есть функция f(x) взаимно однозначна.

Уравнение в таком случае принимает следующий вид:

f(ax^2-2x)=f(x^2-1)

Поскольку каждому значению функции соответствует только одно значение аргумента, равенство значений функции можно свести к равенству её аргументов:

ax^2-2x=x^2-1\\(a-1)x^2-2x+1=0

Если a-1=0\Leftrightarrow a=1, то это линейное уравнение, имеющее не более одного корня, что не подходит.

Если a\neq 1, то это квадратное уравнение. Оно имеет два корня при положительном дискриминанте:

D=4-4(a-1)=4(2-a)0\Leftrightarrow a

Учитывая, что a\neq 1, получаем ответ a\in (-\infty; 1)\cup (1;2)

4,4(2 оценок)
Ответ:
сашп17
сашп17
30.05.2021

Объяснение:

Нам необходимо доказать, что

S(n) = 1 / 1 * 2  + 1 /2 * 3 + ... + 1 /n * (n + 1) = n / (n + 1).

Проведем доказательство по индукции.

S(1) = 1 / 1 * 2 = 1/2 = 1 /(1 + 1) = 1/2.

Предположим, что утверждение верно

для любого натурального к <=  n.

Тогда

S(n + 1) = 1 / 1 * 2  + 1 / 2 * 3 + ... + 1 / n * (n + 1) +

+ 1 / (n + 1) * (n + 2) = S(n) + 1 / (n + 1) * (n + 2) =

= n / (n + 1) + 1 / (n + 1) * (n + 2) =

= (n * (n + 2) + 1) / (n + 1) * (n + 2) =

= (n^2 + 2 * n + 1) / (n + 1) * (n + 2) =

= (n + 1)^2 / (n + 1) * (n + 2) = (n + 1) / (n + 2)

4,8(83 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ