ОДЗ:
Решаем каждое неравенство:
⇒ ⇒
Подмодульные выражения обращаются в 0 в точках
и
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒ ⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
⇒ ⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x|=x
⇒ ⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при
Решаем неравенство:
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
второе неравенство решаем на промежутках так:
⇒ ⇒ ⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒ ⇒ x < -5 или x > 1
не принадлежат (-4;0]
⇒ ⇒ ⇒
о т в е т этого случая
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
⇒ ⇒ -5 < x < 1
о т в е т. (-4;0]
С учетом ОДЗ получаем окончательный ответ:
ОДЗ:
Решаем каждое неравенство:
Подмодульные выражения обращаются в 0 в точках
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
ОДЗ:
Решаем неравенство:![log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}0](/tpl/images/1360/8793/8016d.png)
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
второе неравенство решаем на промежутках так:
(-∞;-4]
не принадлежат (-∞;-4]
на (-4;0]
не принадлежат (-4;0]
(0;+∞)
о т в е т этого случая![(1;5)](/tpl/images/1360/8793/b40c6.png)
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
второе неравенство решаем на промежутках так:
(-∞;-4]
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
о т в е т. (-4;0]
(0;+∞)
о т в е т этого случая![(-3;-1-\sqrt{3})](/tpl/images/1360/8793/6e001.png)
С учетом ОДЗ получаем окончательный ответ:![(-3;-1-\sqrt{3})\cup(1;5)](/tpl/images/1360/8793/09ee0.png)