М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Emil304
Emil304
22.03.2023 12:12 •  Алгебра

Чи існує таке значення змінної a, при якому значення двочленів 4,5а²+0,18 і 0,3 + 0,5 а рівні?​

👇
Открыть все ответы
Ответ:
Nessmikk13
Nessmikk13
22.03.2023

ОДЗ:

\left \{ {{x^2+2x-20} \atop{ {x^2+2x-2\neq1 }\atop{\frac{|x+4|-|x|}{x-1}0 }} \right.

Решаем каждое неравенство:

x^2+2x-20    ⇒   (x+1)^2-3 0   ⇒(x+1-\sqrt{3})(x+1+\sqrt{3})0

x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)

x^2+2x-2\neq 1    ⇒     x^2+2x-3\neq 0  ⇒     x\neq -3;  x\neq 1

\frac{|x+4|-|x|}{x-1}0  

Подмодульные выражения обращаются в 0 в точках

x=-4    и  x=0

Это точки делят числовую прямую на три промежутка.

Раскрываем знак модуля на промежутках:

(-∞;-4]

|x+4|=-x-4

|x|=-x

\frac{-x-4-(-x)}{x-1}0     ⇒     \frac{-4}{x-1}0    ⇒    x < 1

решение неравенства (-∞;-4]

(-4;0]

|x+4|=x+4

|x|=-x

\frac{x+4-(-x)}{x-1}0     ⇒     \frac{2x+4}{x-1}0    ⇒    x < -2 или  x > 1

решение неравенства (-4;-2)

(0;+∞)

|x+4|=x+4

|x|=x

\frac{x+4-x}{x-1}0     ⇒     \frac{4}{x-1}0    ⇒    x > 1

решение неравенства (1;+∞]

Объединяем  ответы трех случаев:

\frac{|x+4|-|x|}{x-1}0    при   x \in (-\infty;-2)\cup(1;+\infty)

ОДЗ:

\left \{ {{x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)} \atop{ {x\neq-3; x\neq 1 }\atop{ x \in (-\infty;-2)\cup(1;+\infty)}} \right.

x\in (-\infty;-3)\cup(-3;1-\sqrt{3}) \cup(1;+\infty)

Решаем неравенство:  log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}0

0=log_{x^2+2x-1}1

log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}log_{x^2+2x-2}1

Два случая:

если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента

\left \{ {{x^2+2x-21} \atop {\frac{|x+4|-|x|}{x-1}1}} \right.     ⇒     \left \{ {{x^2+2x-30} \atop {\frac{|x+4|-|x|-x+1}{x-1}0}} \right.     ⇒           \left \{ {{x\in (-\infty;-3) \cup(1;+\infty)} \atop {x\in(-\infty;-4]\cup(1;5)}} \right.

второе неравенство решаем на промежутках  так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}0    ⇒    \frac{-3-x}{x-1}0   ⇒    \frac{x+3}{x-1}  ⇒ (-3;-1)

не принадлежат (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}0      ⇒      \frac{x+5}{x-1}0    ⇒    x < -5   или  x > 1

не принадлежат (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}0      ⇒    \frac{5-x}{x-1}0    ⇒   \frac{x-5}{x-1}    ⇒x\in (1;5)

о т в е т  этого случая (1;5)

если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента

\left \{ {{0     ⇒     \left \{ {0      ⇒   \left \{ {{x\in (-3;-1-\sqrt{3}) \cup(-1+\sqrt{3};1)} \atop {x\in(-\infty;-4]\cup(-4;0]\cup(5;+\infty)}} \right.

второе неравенство решаем на промежутках так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}    ⇒    \frac{-3-x}{x-1}   ⇒    \frac{x+3}{x-1}0  ⇒

(-∞;-3)U(1;+∞)

о т в е т. (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}      ⇒      \frac{x+5}{x-1}    ⇒     -5 < x < 1

о т в е т.  (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}      ⇒    \frac{5-x}{x-1}    ⇒   \frac{x-5}{x-1}0    ⇒x\in (0;1)\cup(5;+\infty)

о т в е т  этого случая (-3;-1-\sqrt{3})

С учетом ОДЗ получаем окончательный ответ:(-3;-1-\sqrt{3})\cup(1;5)

4,6(75 оценок)
Ответ:
makka23
makka23
22.03.2023
4^x = (2^x)^2
9^x = (3^x)^2
6^x = 2^x * 3^x
здесь нужно делить обе части равенства на (2^x)^2
или на (3^x)^2 ---без разницы)))
разделим на (2^x)^2
подучим: 1 - 12*(3^x) / (2^x) + 11* ((3/2)^x)^2 = 0
это квадратное уравнение относительно (3/2)^x
D=12*12 - 4*11 = 4*(36-11) = 4*25 = 10^2
корни: (12 +- 10) / 22
(3/2)^x = 1  --->  x = 0
(3/2)^x = 1/11  --->  (2/3)^x = 11 ---> x = log(2/3) (11)

разделим на (3^x)^2
подучим: ((2^x)/(3^x))^2 - 12*(2^x) / (3^x) + 11 = 0
это квадратное уравнение относительно (2/3)^x
D=12*12 - 4*11 = 4*(36-11) = 4*25 = 10^2
корни: (12 +- 10) / 2 = 6 +- 5
(2/3)^x = 1  --->  x = 0
(2/3)^x = 11  --->  x = log(2/3) (11)
4,6(54 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ