Существует следующее утверждение: если рациональное уравнение с целочисленными коэффициентами имеет хотя бы один целый корень, то искать его стоит только среди делителей свободного члена. Свободный член здесь: -33. Значит, претенденты на один из корней такие: +-1;+-2;+-11;+-33 - делители -33. Просто проверяем подстановкой каждое из этих чисел. В конечном итоге получаем, что 3 - корень уравнения. Один корень мы подобрали. Чтобы найти другие корни, можно использовать разные методы: можно использовать схему Горнера или поделим уголков на x - a, где a - подобранный корень, у нас это 3. Делим уголком уравнение на x-3. Можно по схеме Горнера подобрать коэффициенты квадратного уравнения. Так или иначе мы получаем, что x^3 + 2x - 33 = (x-3)(x^2 + 3x + 11) Теперь осталось лишь найти корни уравнения x^2 + 3x + 11 = 0: D = 9 - 44 < 0 - корней нет Значит, x = 3 - единственный корень исходного уравнения
1)sin250=sin(360-90)=-sin90=-1 2)это формула двойного тангенса получается просто нужно найти тангенс 60 это табличное значение корень из 3 3)sin=4/5 cos=-3/5 там по основному тригонометрическому тождеству находишь косинус так как угол 2 четверти то по окружности смотришь косинус угла второй четверти всегда отрицательный поэтому -3/5 ctg a/2 = 1+cos/sin ctg a/2= 1+(-3/5)/4/5=2/5/4/5=1/2 sin(a+b)=sin a*cos b+ cos a sin b sin(a-b)=sin a* cos b- cos a*sin b sin a*cos b+ cos a sin b-sin b+ cos a/sin a* cos b- cos a*sin b+sin b*cos a там все вроде сократится
+-1;+-2;+-11;+-33 - делители -33. Просто проверяем подстановкой каждое из этих чисел. В конечном итоге получаем, что 3 - корень уравнения. Один корень мы подобрали. Чтобы найти другие корни, можно использовать разные методы: можно использовать схему Горнера или поделим уголков на x - a, где a - подобранный корень, у нас это 3. Делим уголком уравнение на x-3. Можно по схеме Горнера подобрать коэффициенты квадратного уравнения. Так или иначе мы получаем, что
x^3 + 2x - 33 = (x-3)(x^2 + 3x + 11)
Теперь осталось лишь найти корни уравнения x^2 + 3x + 11 = 0:
D = 9 - 44 < 0 - корней нет
Значит, x = 3 - единственный корень исходного уравнения