V₁=V - V₀ (за V₀ примем скорость течения реки,а за v -скорость катера)-это когда он ехал против течения;
V₂=V+V₀ -скорость по течению;
V₃=V -скорость в стоячей воде;
t₁ -время против течения;
t₂ -время по течению;
Теперь вспомним формулу пути: S=V*t (где V -скорость катера,а t -его время)
По условию сказано,что по течению за 5 часов он путь на 20 км больше чем против течения за 4 часа.
Теперь подставим в формулу пути значения времени и формулу скорости(выведенную вначале).
S₁=V₁×t₁=(вместо V₁ пишем V -V₀);=(V-V₀)×4;(Время нам дано по условию)
S₂=V₂×t₂=(вместо V₂ пишем V+V₀);=(V+V₀)×5;
Получаем систему уравнений прощения, знака системы не нашёл):
(15,5-V₀)×4=S₁
(15,5+V₀)×5=S₂
Но мы знаем разницу S₂-S₁=20
И теперь вместо S₂ и S₁ подставляем в эту разницу (15,5+V₀)×5 и (15,5-V₀)×4 соответственно.
После раскрытия скобок и привидения подобных получаем: 9V₀=4,5.
Отсюда легко находим V₀. V₀= 0,5км/час
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
(0) [1] [ 3]
* * * совокупность неравенств [ { t ≤ 1 ; t ≠0 . { t ≥ 3 * * *
a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .