Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Значит 1) Площадь параллелограмма равна Основание умноженное на высоту 2) Проводишь высоту параллелограмма 3) У тебя получается треугольник, один угол равен 60 градусов, другой 90 (прямой), следовательно третий угол равен 30. 4) Сторона лежащая на против угла в 30 градусов равна половине гипотенузы, значит эта сторона равна 10 (половина гипотенузы, которая равна 20) 5) По теореме Пифагора найдем высоту. Высота равна квадратный корень из 20^2 - 10^2. Это равно 10 умножить на корень из 3. 6) Площадь параллелограмма равна 22 умножить на 10 корней из 3. 220 корней из 3 Возможно в вычислении ошиблась где-то Но так вроде все верно должно быть Если ты знаешь основы геометрии, то все поймешь.
Дана система уравнений xy + x = 8, xy + y = 5
у = (8 - х)/х из первого уравнения,
у = 5/(х + 1) из второго.
Приравняем (8 - х)/х = 5/(х + 1), откуда получаем квадратное уравнение:
х² - 2х - 8 = 0. Д = 4 + 32 = 36. х1 = (2 - 6)/2 = -2, х2 = (2 + 6)/2 = 4.
Находим игреки: у1 = 5/(-2 + 1) = -5, у2 = 5/(4 + 1) = 1.