В ящике лежат 80 кубиков разных цветов: 25 красных, 20 зелёных, 20 жёлтых, остальные синие и белые. Сколько кубиков нуж- но взять, чтобы среди них оказалось не менее 15 кубиков одного цвета? РЕШИТЬ С ПОЛНЫМ РЕШЕНИЕМ !)
Учитывая самое неблагоприятное событие (чтобы было гарантировано, а значит не менее), что каждый раз достаем разный цвет кубика примем:
с=а*(в-1)+1+д
где
а - количество цвета кубиков = 3 (только тот цвет, где гарантированно есть 15 кубиков)
в - необходимое количество кубиков одного цвета = 15;
с - необходимо достать кубиков из ящика;
д - количество кубиков с количеством цвета меньше 15.
тогда
с=3*(15-1)+1+15=58 кубик
tgx=2tgx/(1-tg²x)
{tgx-tg³x-2tgx=0⇒tg³x+tgx=0⇒tgx(tg²x+1)=0⇒tgx=0⇒x=πn,n∈z (tg²x+1>0)
{1-tg²x≠0
ответ x=πn,n∈z
2
2sinxcosx-2√3cos²x=0
2cosx(sinx-√3cosx)=0
cosx=0⇒x=π/2+πn,n∈z
sinx-√3cosx=0/cosx⇒tgx-√3=0⇒tgx=√3⇒x=π/3+πn,n∈z
3
sin²x-2cosx=0
1-cos²x-2cosx=0
cosx=a
a²+2a-1=0
D=4+4=8
a1=(-2-2√2)/2=-1-√2⇒cosx=-1-⇒2<-1 нет решения
a2=-1+√2⇒cosx=√2-1⇒x=+-arccos(√2-1)+2πn,n∈z
4
2cos(5x/2)*cos(3x/2)=0
cos(5x/2)=0⇒5x/2=π/2+πn⇒x=π/5+2πn/5,n∈z
cos(3x/2)=0⇒3x/2=π/2+πn⇒x=π/3+2πn/3,n∈z
5
2*1-3cosx-2=0
-3cosx=0
cosx=0
x=π/2+πn,n∈z
6
2sin²x-sinx=0
sinx(2sinx-1)=0
sinx=0⇒x=πn,n∈z
sinx=1/2⇒x=(-1)^n*π/6+πn,n∈z