М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olya0091184
olya0091184
11.04.2020 10:39 •  Алгебра

Записати рівняння кола, що симетричне колу, заданому рівнянням

( х-3)2 + (у +2)2 = 9 відносно точки К( 2; 0)​

👇
Открыть все ответы
Ответ:
aidana200257
aidana200257
11.04.2020

Для решения неравенства методом интервалов будем выполнять следующие шаги

1) найдем корни уравнения уравнения

(x+3)(x-4)(x-6)=0

произведение равно нуля когда любой из множителей равен нулю

х+3=0 или х-4=0 или х-6=0

тогда х= -3 или х= 4 или х=6

2) Нарисуем числовую ось и отметив полученные точки

-3 4 6

3) в каждом из полученных промежутков определим знак нашего выражения

при х< -3 проверим для точки х= -5

(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0

при -3<x<4 проверим для точки х=0

(0+3)(0-4)(0-6)=(+)(-)(-)>0

при 4<x<6 проверим для точки х=5

(5+3)(5-4)(5-6)=(+)(+)(-)<0

при x>6 проверим для точки х=10

(10+3)(10-4)(10-6)= (+)(+)(+)>0

4) расставим полученные знаки над промежутками

--3+4-6__+

5) и теперь осталось выбрать промежутки  где стоит знак "минус"

( по условию <0)

Запишем полученные промежутки (-∞; -3) ∪(4;6)

4,4(82 оценок)
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ