Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет [2;3)