1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
Составим матем. модель ситуации. Для этого примем за х количество машин, которое завод должен был ежедневно выпускать по плану. Значит, заказ был на 20х машин. Но завод, делая в день по х+2 машины, выполнил заказ за 18 дней, т.е. выпустил 18(х+2) машины. Т.к. речь идет об одном и том же заказе, 20х = 18(х+2). Решим составленное уравнение: 20х = 18(х+2) 20х = 18х+36 20х - 18х = 36 2х = 36 х = 36 : 2 х = 18. ответ: по плану завод должен был выпускать 18 машин.
проверка: 18 машин × 20 дней (по плану) = 360 машин. 18+2=20 машин × 18 дней (на самом деле) = 360 машин. 360 = 360, т.е решение выполнено верно