Обозначим путь s, а скорость велосипедиста v 27 минут =27/60 часа=9/20 часа 29 минут =29/60 часа время, которое велосипедит тратит на прохождение пути s/v Если он увеличит скорость на 9км/ч , то время прохождения станет s/(v+9) s/v - s/(v+9) = 9/20 Если он уменьшит скорость на 5км/ч , то время прохождения станет s/(v-5) s/(v-5) - s/v = 29/60 получили систему из двух уравнений. Выразим s из каждого из них первое уравнение s/v - s/(v+9) = 9/20 s(1/v - 1/(v+9)) = 9/20 s((v+9-v)/v(v+9)) = 9/20 s(9/v(v+9)) = 9/20 s(1/v(v+9)) = 1/20 s=v(v+9)/20
Рассмотрим сразу числитель: sin 10 cos 55 + sin 280 sin 55 = sin 10 cos 55 + sin (270 + 10) sin 55 = [формулы приведения] = sin 10 cos 55 + (-cos 10) sin 55 = [sin (a-b) = sin a cos b - sin b cos a] = sin (10 - 55) = sin (-45) = - sin 45 = -√2/2 Знаменатель: sin 10 cos 110 + sin 260 cos 200 = sin 10 cos (90 + 20) + sin (270 - 10) cos (180 +20) = sin 10 (-sin 20) + (-cos 10) (-cos 20) = cos 10 cos 20 - sin 20 sin 10 = [cos(a+b) = cos a cos b - sin a sin b] = cos (10+20) = cos 30 = √3/2 Все выражение: √6 * (-√2/2) / (√3/2) = -√6*√2*2 / (2√3) = -√2 * √2 = -2
7x + y = 24
y = 24 - 7x