Теплоход проходит расстояние между двумя пристанями по течению реки за 3 ч., а против течения — за 3,7 ч. Собственная скорость теплохода — v км/ч, а скорость течения реки — x км/ч».
a) Определи скорость теплохода по течению реки и против течения реки.
b) Определи расстояние, которое теплоход проплыл по течению реки.
с) Определи расстояние, которое теплоход проплыл против течения реки.
d) Сравни расстояние, пройденное теплоходом по течению реки и против течения реки.
Результат сравнения запиши в виде математической модели.
ответ:
a) скорость теплохода по течению реки —
км/ч; против течения реки —
км/ч;
b) расстояние, которое теплоход проплыл по течению реки:
⋅(
+
) км;
с) расстояние, которое теплоход проплыл против течения реки:
⋅(
−
) км;
d) расстояние, пройденное теплоходом по течению реки, и расстояние, пройденное теплоходом против течения реки, будут (запиши прилагательное)
, т. е.
⋅(
+
)
⋅(
−
) км.
Пусть одна сторона этих прямоугольников x, а другая y.
У одного прямоугольника периметр P = 2(x + y) = 20
x + y = 10; x = 10 - y.
Приставим прямоугольники друг к другу в цепочку сторонами x.
Получим длинный прямоугольник с сторонами x и 7y
P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100
10 + 6y = 50
6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3
Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20,
а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых.
Это и есть максимум.
3) Бред - треугольник не может быть ромбом.