(x+14)(x-2)=x2-2x+14x-28=x2+12x-28
Объяснение:
Метод: "Фонтанчиком".
СтранноЮ простая ведь задача, для 1 класса, даже думать не нужно, всё известно.
Гляди
Пусть
v - скорость одного, тогда
(v+1) - скорость другого, ну и всё, скорости известны, расстояние известно, найдём время
36/v - время одного
36/(v+1) - время другого, и нам известно, что первое время на полчаса больше, значит
36/v - 36/(v+1) = 1/2
72*(v+1) -72*v = v*(v+1)
v^2 + v -72 = 0
v1=8 v1+1 = 9
v2=-9 v2+1 = -8
ответ Скорость одного была 8, а второго 9 км/ч
Замечание1 Я сразу написал решение квадратного уравнения, ведь у тебя, насколько я понял, возникли сложности с решением ЗАДАЧИ, а уравнения ты решать умеешь.
Замечание2 Я специально не отбросил второй, отрицательный корень, чтобы ты увидела, что уравнение гораздо умнее, чем можно было подумать, оно даёт 2 правильных одинаковых решения(знак - это направление скорости).
Но если уж слишком по-школьному, то отрицательное решение можешь и отбросить.
Замечание3 Я не использовал термины первый и второй, а использовал один и другой, это более обще, и, вообще говоря, они у меня "наоборот" к условию. А найти нужно скорости "каждого", а не конкретно "первого" и "второго".
Ну и просто так: А зачем практически летом решать задачи про лыжников? Про велосипедистов, ну или бегунов как-то своевременнее, что ли. :)
а) 2х-10/х^2-х-20=2(х-5)/(х-5)×(х+4)=2/х+4
х^2-х-20=0
D=b^2-4ac(D-дискриминант)
D=1^2-4×1×(-20)=1+80=81>0(2различных действительных корня)
Х1, 2=-b+-корень из D/2a
X1=-(-1)+9/2×1=1+9/2=10/2=5
X2=-(1)-9/2×1=1-9/2=-8/2=-4
Т.Е.Х1=5
Х2=-4
След.(х-5)×(х+4).
Подставляем в начало
Объяснение:
б) х^2+12х+27/х^2+8х-9=(х+3)(х+9)/(х-1)(х+9)=х+3/х-1
Записываем первое уравнение и приравниваем к 0
х^2+12х+27=0
D=b^2-4ac
D=(12)^2-4×1×27=144-108=36>0(2 различных действительных корня)
Х1, 2=-b+-корень из D/2a
X1=-12+6/2×1=-6/2=-3
X2=-12-6/2=-18/2=-9
Т.Е.Х1=-3
Х2=-9
След.(х+3)×(х+9)
Подставляем полученное выражение в числитель
Затем берём второе уравнение и приравниваем его к 0
х^2+8х-9=0
D=b^2-4ac
D=(8)^2-4×1×(-9)=64+36=100>0(2 различных действительных корня)
Х1, 2=-b+-корень изD/2a
X1=-8+10/2×1=2/2=1
X2=-8-10/2×1=-18/2=-9
Т.Е.Х1=1
Х2=-9
След.(х-1)×(х+9)
Подставляем полученное выражение в знаменатель
(x+14)⋅(x−2)
х(х-2)+14(х-2)
х^2+12х-28