М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ЯЯЯЯМаша
ЯЯЯЯМаша
13.06.2021 16:43 •  Алгебра

Контрольная работа по теме «Линейная функция, ее график и свойства»
Вариант 2.
№ 1. Функция задана формулой y = 3x – 7. Определите:
1) значение функции, если значение аргумента равно 3;
2) значение аргумента, при котором значение функции равно 2;
3) проходит ли график функции через точку С(2; 1)
№ 2.Постройте график функции y = –4x+2. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 2;
2) значение аргумента, при котором значение функции равно -6.
№ 3.Не выполняя построения, найдите координаты точек пересечения графика функции
y = 0,7x-14 с осями координат.

№ 4.При каком значении k график функции y = kx – 6
проходит через точку В( – 4; – 22)?
№ 5. Вариант 2 Постройте график функции

👇
Открыть все ответы
Ответ:
dan40s
dan40s
13.06.2021

y=|x-1|+|x-3| , x≥ -1

Отметим нули выражений, находящихся под знаками модулей. Это х=1 и х=3. Вычислим знаки выражений, находящихся по знаками модулей, в трёх получившихся промежутках:

(х-1) : - - - (1) + + + (3) + + +

(х-3) : - - - (1) - - - - (3) + + +

Теперь рассмотрим, какой вид примет функция , в этих трёх промежутках.

1) -1≤ х≤1 : |x-1|=-(x-1)=1-x , |x-3|=-(x-3)=3-x ⇒ y=1-x+3-x , y=4-2x .

Cтроим прямую у=4-2х на промежутке х∈[-1, 1 ] .

2) 1<x≤3 : |x-1|=x-1 , |x-3|=-(x-3)=3-x ⇒ y=x-1+3-x , y=2.

Строим прямую у=2 на промежутке х∈(1,3 ] .

3) x>3 : |x-1|=x-1 , |x-3|=x-3 ⇒ y=x-1+x-3 , y=2x-4 .

Строим прямую у=2х-4 на промежутке х∈(3,+∞) .

График нарисован синим цветом на рисунке.


Построить график функции y=|x-1|+|x-3|, если х > /= -1
4,8(85 оценок)
Ответ:
Dyhanexis
Dyhanexis
13.06.2021
Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
4,8(57 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ