Решение методом разложения:
Разложим числа на простые множители и подчеркнем общие множители чисел:
58110697294650 = 2 · 3 · 3 · 3 · 5 · 5 · 7 · 7 · 7 · 11 · 11 · 13 · 13 · 17 · 19 · 19
3191270940 = 2 · 2 · 3 · 3 · 3 · 5 · 11 · 11 · 13 · 13 · 17 · 17
Общие множители чисел: 2; 3; 3; 3; 5; 11; 11; 13; 13; 17
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД обоих чисел = 2 · 3 · 3 · 3 · 5 · 11 · 11 · 13 · 13 · 17 = 93860910
Решение методом Евклида:
1) 58110697294650 : 3191270940 = 18209 (ост. 844748190)
2) 3191270940 : 844748190 = 3 (ост. 657026370)
3) 844748190 : 657026370 = 1 (ост. 187721820)
4) 657026370 : 187721820 = 3 (ост. 93860910)
5) 187721820 : 93860910 = 2 без остатка.
Значит, 93860910 является НОД.
Примечание:
Проверку прикрепил фотографией.
ответ: НОД = 93860910.
1-ый кран наполнит пустую ванну за 18 минут; 2-ой кран опорожнит полную ванну за 12 минут
Объяснение:
Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36.
Получаем уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.