Заметим, что если a и b дают такие же остатки при делении на n, что и x, y, то ab даёт такой же остаток при делении на n, что и xy. (Доказательство: a = np + x, b = nq + y для некоторых целых p, q. Тогда ab = (np + x)(nq + y) = n(npq + qx + py) + xy. Первое слагаемое делится на n, значит, ab даёт такой же остаток, что и xy). Из этого следует, что если у a и x одинаковые остатки, то и у любых их натуральных степеней a^m, x^m будут одинаковые остатки. Дальше для сокращения записей будет использоваться такое обозначение: "если a ≡ x(mod n), то a^k ≡ x^k (mod n).
Боковые стороны по определению равны (т.к. они равнобедренные) 1. Нужно опустить перпендикуляр к большему основанию (от любого конца меньшего основания (концов всего 2 )) 2. Из за опущенного перпендикуляра образуется прямоугольный треугольник, гепотенуза которого равна 5 корней из 2 и углом 45 градусов. Из этого треугольника мы можем высчитать как высоту трапеции, так и отрезок большего основания. И т.к. у нас образовался прямоугольный треугольник, то 2 катета будут равными ( 2 угла по 45 градусов, один 90). Если посчитать, то действия будут примерно такими: Возьмём за х одну из 2ух равных сторон ( какую бы мы не взяли, разницы нету, они равные), и получаем пропорцию (и ещё, sin45=cos45=корень из 2 делённый на 2) √(2)/2=x/5√2 => x=5 (синус - противолежащий катет на гипотенузу, косинус - прилежащий катет на гипотенузу) 3. Мы нашли высоту и часть большего основания, далее мы найдём всё большее основания. Так как трапеция равнобедренная, то отрезки будут с разных концов равными друг для друга => Большее основание= 10+5*2=20 4. Ну а теперь находим площадь. Площадь трапеции расчитывается по формуле: S=Средняя линия трапеции*H. Средняя линия трапеции расчитывается по формуле Ac=(большее основание + меньшее основание)/2. S=(20+10)2*5=> S=75 Надеюсь я сумел вам
(Доказательство: a = np + x, b = nq + y для некоторых целых p, q. Тогда ab = (np + x)(nq + y) = n(npq + qx + py) + xy. Первое слагаемое делится на n, значит, ab даёт такой же остаток, что и xy).
Из этого следует, что если у a и x одинаковые остатки, то и у любых их натуральных степеней a^m, x^m будут одинаковые остатки. Дальше для сокращения записей будет использоваться такое обозначение: "если a ≡ x(mod n), то a^k ≡ x^k (mod n).
1) 27^n + 12 ≡ 1^n + 12 ≡ 13 ≡ 0 (mod 13)
2) 17^n + 15 ≡ 1^n + 15 ≡ 16 ≡ 0 (mod 16)
3) 8^n + 15^n - 2 ≡1^n + 1^n - 2 ≡ 0 (mod 7)
4) 3 * 9^n + 7 * 7^(2n) = 3 * 9^n + 7 * 49^n ≡ 3 * (-1)^n + 7 * (-1)^n = (-1)^n * 10 ≡ 0 (mod 10)