Сторона квадрата равна корень из его площади ( по формуле ) , значит его стороны по 4 см . Если расположить квадраты вдоль прямоугольника , чтобы они не касались друг друга , то длинна прямоугольника должна быть равна = 4+4+4 = 12 , а у нас длинна прямоугольника равна 10 . Если расположить квадраты в высоту ( по ширине прямоугольника ) , то ширина должна быть равна тоже 12 см ( чтобы квадраты не накладывались друг на друга ) , а у нас высота ( ширина ) = 4 см . Значит хотя бы 2 квадрата накладываются друг на друга :)
Положим что утверждение 1 неверное,тогда тк последняя цифра записи,цифра 1,то у числа A-8 последняя цифра 3,но квадрат натурального числа не может кончаться цифрой 3,тк всевозможные квадраты последних цифр: 1,4,9,16,25,36,49,64,81: есть они могут кончаться только на цифры 1 4 9 6 5 Тогда 1 утверждение верное.Положим что неверно 3 утверждение,тогда последняя цифра числа A+7 цифра 8,но такое невозможно тк квадраты кончаются на цифры 1,4,6,9,5. Тогда утверждение 2 неверно,а утверждения 1 и 3 верные. Тогда пусть a^2=A+7 b^2=A-8 a,b-натуральные числа,тогда a^2-b^2=15 (a-b)(a+b)=15 ,тогда множители натуральные и возможно 2 варианта 1) a-b=3 a+b=5 2a=8 a=4 A=4^2-7=9 2) a-b=1 a+b=15 2a=16 a=8 A=8^2-7=57 То есть возможно 2 варианта A=9 или A=57