7. РЕШЕНИЕ: Всего существует 90 двузначных чисел. Тогда в испытании "выбор наугад двузначного числа" существует 90 равновозможных вариантов. Среди двузначных чисел есть 7 (13, 26, 39, 52, 65, 78, 91) чисел, делящихся нацело на 13. Следовательно, к наступлению события а - "выбранное наугад двузначное число делится нацело на 13" - приводят 7 благоприятных результатов. Тогда Р(А) =7/90≈0,078
8. Всего вариантов - 40. Благоприятных результатов - 27 (т.к. от 1 до 40 существует 13 чисел, в которых есть цифра "3" => 40-13=27) P=27/40=0,0675
9. 1) Всего вариантов - 24. Благоприятных результатов - 4 (6, 12, 18, 24). P=4/24≈0,017.
2) Всего вариантов - 24. Благоприятных результатов - 13 (т.к. от 1 до 24 содержится 11 чисел, кратных 3 и 5 => 24-11=13). P=13/24≈0,542
Объяснение:Пусть х (км/ч) - скорость одного пешехода; 3х (км) - расстояние, которое он до встречи за 3 часа
у (км/ч) - скорость другого пешехода; 3у (км) - расстояние, которое он до встречи за 3 часа.
Составим систему уравнений по условию задачи и решим её методом алгебраического сложения:
3х + 3у = 30
3х - 3у = 6
6х = 36
х = 36 : 6
х = 6 (км/ч) - скорость одного пешехода
Подставим значение х в любое уравнение системы
3 * 6 + 3у = 30 3 * 6 - 3у = 6
18 + 3у = 30 18 - 3у = 6
3у = 30 - 18 3у = 18 - 6
3у = 12 3у = 12
у = 12 : 3 у = 12 : 3
у = 4 у = 4 (км/ч) - скорость другого пешехода
Р.S. Скорость второго пешехода (у) можно найти ещё и так:
30 : 3 = 10 (км/ч) - скорость сближения двух пешеходов
10 - 6 = 4 (км/ч) - скорость второго пешехода.
Вiдповiдь: 6 км/год i 4 км/год.
a-2+8-11+4
Объяснение: