Пусть v ( можно х ) - скорость первой машины, тогда скорость 2 машины ( v+20). Путь они одиннаковый 180км, выразим время движения 1 и 2 машины. t1=180 / x, t2=180 / ( x+20) . Зная, что первая пришла позже на 45 мин=0,75ч, составим уравнение: 180 / x - 180 / ( x+20)=0,75, решим уравнение относительно х. 180х+3600 - 180х =0,75х^2 +15x, получили квадратное уравнение 0,75х^2 +15x -3600=0, решаем, получаем 2 корня х1=60, х2= -80 ( скорость отрицательной не бывает ) значит скорость 1 автомобиля v=60км/ч, скорость второго 60+20=80км/ч . ответ: 1 машина 60км/ч, 2 машина 80км /ч.
1)2х²+4х-10=0 Делим всё на 2. x²+2x-5=0. квадратное уравнение вида ax²+bx+c=0,a=1,b=2, c=-5 D=b²-4ac=2²-4·1·(-5)=4+20=24. √D=√24=2√6 x₁=(-b+√D)/2a=(-2+2√6)/2=2(√6-1)/2=(√6-1)/1=√6-1 x₂=(-b-√D)/2a=(-2-2√6)/2=-2(√6+1)/2=-(√6+1), где x₁=√6-1 и x₂=-(√6+1) корни уравнения. Теперь находим произведение корней уравнения: x₁·x₂=(√6-1)·(-1)·(√6+1)=(√6²-1²)·(-1)=-(6-1)=-5 2) [(3/(x-3)-(3/x)]·x+3/9=[[3x-3(x-3)]·x]/(x-3)·x +3/9=раскрываем скобки и сокращаем=[3x-3x+9]/(x-3)·x +3/9=9/(x-3)+3/9=первую дробь умножаем на 9, вторую умножаем на (x-3) =(81+3x²-9x)/(x-3)x=(81+3x-9)/(x-3)= =(72-3x)/(x-3)=3(24-x)/(x-3) 3) 4√0.0016-(1/2)√0.04=4·√(0.04)²-(1/2)·√(0.2)²=4·0.04-0.2÷2=0.16-0.1=0.06
Путь они одиннаковый 180км, выразим время движения 1 и 2 машины.
t1=180 / x, t2=180 / ( x+20) . Зная, что первая пришла позже на 45 мин=0,75ч, составим уравнение: 180 / x - 180 / ( x+20)=0,75, решим уравнение относительно х.
180х+3600 - 180х =0,75х^2 +15x, получили квадратное уравнение
0,75х^2 +15x -3600=0, решаем, получаем 2 корня х1=60, х2= -80 ( скорость отрицательной не бывает ) значит скорость 1 автомобиля v=60км/ч, скорость второго 60+20=80км/ч .
ответ: 1 машина 60км/ч, 2 машина 80км /ч.