М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Помощница07
Помощница07
23.05.2020 05:34 •  Алгебра

Найдите значение выражения
4 11/18-3x 1/27

👇
Ответ:
arpinan
arpinan
23.05.2020

4\dfrac{11}{18}-3\cdot \dfrac{1}{27}=\dfrac{83}{18}-\dfrac{1}{9}=\dfrac{83-2}{18}=\dfrac{81}{18}=\dfrac{9}{2}=4,5

4,6(43 оценок)
Ответ:
Каримовка
Каримовка
23.05.2020

ответ: 4 11/18-3/27=4 5,5/9-1/9=4 4,5/9=4 1/2.

Объяснение:

4,6(4 оценок)
Открыть все ответы
Ответ:
amid2003
amid2003
23.05.2020

Дана функция  у = х² – 6х + 5

а) График, заданный этим уравнением является параболой. Так как  а > 0 (коэффициент при х² положительный), ветви параболы направлены вверх.

b)Координаты вершины параболы рассчитываются по формуле:

х₀ = -b/2a  = 6/2 = 3

у₀  = 3² – 6*3 + 5 = -4

Координаты вершины параболы ( 3; - 4)

c)Ось симметрии - прямая, перпендикулярная оси Х и параллельна оси У и проходит через вершину параболы.

Формула: Х = -b/2a  = 3

d) Найти нули функции. Обычно ищут по дискриминанту:

D =  -b ± √b² – 4ac) / 2a

х₁,₂ = (6 ± √36 – 20) / 2

х₁,₂ = (6 ± √16) / 2

х₁,₂ = (6 ± 4) / 2

х₁ = 1

х₂ = 5

Это нули функции, точки, где парабола пересекает ось Х  при  у=0.

e) Найти дополнительные точки, чтобы можно было построить график. Придаём значения х, получаем значения у:

х = 0   у = 5                                  (0; 5)

х = -1   у = 12                                 (-1; 12)

х = 2    у = -3                                ( 2; -3)

х = 4   у =  -3                                 (4; -3)

x = 6    y = 5                                 (6; 5)

Координаты вершины (3; -4)

Точки пересечения с осью Х   (1; 0) и (5; 0)

Дополнительные точки:   (0; 5)  (-1; 12)  (2; -3)  (4; -3)  (6; 5)

4,5(41 оценок)
Ответ:

1) D(y) = [0; + ∞) \ {1; 2/3}

2) D(y) = [–3; 3] \ {–2}.

Объяснение:

Области определения тут могут быть ограничены следующим: определением корня чётной степени, а также тем, что знаменатель в дроби не равен нулю.

1) Присутствует

\sqrt[4]{x}

Значит х≥0.

Далее знаменатель ≠ 0. Кстати, это ещё и корень с чётной степенью (2), т.е. есть ещё и ограничение, что

3x {}^{2} - 5x + 2 \geqslant 0

А когда корень из числа равен нулю? Тогда и только тогда, когда само подкоренное выражение равно нулю. И да, всё решение рассматриваем на множестве действительных (они же вещественные) чисел.

Значит нужно решить квадратное уравнение, тогда его корни и будут недопустимыми значениями.

3x {}^{2} - 3x - 2x + 2 = 0 < = 3x(x - 1) - 2(x - 1) = 0 < = (x - 1) \times (3x - 2) = 0

Т. о. получается совокупность – либо х = 1, либо 3х = 2. Значит либо х = 1, либо х = 2/3. Так как оба корня является решением квадратного уравнения, при них выражение не будет определено (деление на ноль) т.е. в область определения следует записать: х ≠ 1, х≠2/3.

Т.о. следующие ограничения: х≥0, х ≠ 2/3, х≠1. Все они должны выполняться одновременно, значит D(y) = [0; + ∞) \ {1; 2/3}. Если что, D – обозначение области определения функции, \ – операция "вычитания" из множества.

2) Тут знаменатель тоже не должен быть равен нулю т.е. х + 2 ≠ 0 <=> х ≠ –2.

И также в числителе корень с чётной степенью, значит подкоренное выражение

9 - {x}^{2} \geqslant 0 < = (3 - x) \times (3 + x) \geqslant 0

Предлагаю решить методом интервалов, так как здесь сравнение с нулём.

Необходимо начертить координатную ось с соответствующей подписью (в данном случае х), далее отметить значения, при которых один из множителей обращается в ноль – здесь это х = 3 и х = – 3. Так получились три области, в которых значение произведения/выражения данного одного знака (больше или меньше нуля) Далее подставляем в х огроооомное число, явно превышающее 3 (обозначенное число-граница) т.к. так удобнее и узнаём, больше или меньше 0 это произведение – оно меньше, значит ставим минус в той области. Далее можно не подставлять, а понять, что так как нет других множителей и множителя в чётной степени, знак выражения в областях будет чередоваться. Числа-границы нужно учитывать в ответ (закрашивая), если выражение может быть равно нулю (т.е. ≥0) Таким образом решением является следующее множество: [–3; 3]

Все условия/ограничения должны выполняться, т.е. получается система из х≠–2 и 3 ≥ х ≥–3. Значит область определения D(y) = [–3; 3] \ {–2}.


решите эти два примера , заранее благодарю .
решите эти два примера , заранее благодарю .
4,8(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ