М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
13мама
13мама
01.10.2021 02:21 •  Алгебра

Определи, при каком значении параметра n сумма квадратов корней уравнения x2+nx+14n−2=0 будет наименьшей.

👇
Открыть все ответы
Ответ:
Iraeuroset3
Iraeuroset3
01.10.2021
1) Вспомним, что такое модуль
|x| = x при х≥ 0
|x| = -x при х<0
2)Ищем корни выражения, стоящего под знаком модуля
х² - х - 3 = 0
по т. Виета х= 1 +- √12= 1 +- 2√3
3) уравнение запишем: |x² -x -3| = -1-х
Понятно, что -1 -х ≥ 0⇒ -х ≥ 1⇒ х ≤ -1
вывод: наше уравнение надо рассматривать на промежутке х ≤ -1
4) посмотрим какая картина на числовой прямой
-∞         1 - 2√3      -1            1 + 2√3         +∞
  Это промежуток, на котором уравнение имеет смысл
                              промежуток, где
х² - х - 3 ≥0
                         это промежуток,
где х² - х - 3 ≤ 0 
5) Рассматриваем уравнение на участке (-∞;1 - 2√3] и на участке [1 - 2√3; -1]
6)a)(-∞;1 - 2√3]
x² - x - 3 = -1 - x 
x²= 2
x = +-√2( в указанный промежуток не попали)
б)[1 - 2√3; 1]
-x² + x + 3 = - 1 - x
-x² + 2x +4 = 0
x² - 2x  - 4 = 0
 х = 1 +-√1 + 4= 1 +- √5
из этих двух корней в указанный промежуток попал х = 1 - √5
7)ответ: х = 1 - √5
4,4(70 оценок)
Ответ:
Нафунька
Нафунька
01.10.2021
Пусть p>1 общий делитель k^4 +12*k^2+12 и k^3+9k
Разложим k^4 + 12 * k^2 +12 = k (k^3 + 9k) + 3*k^2 + 12
Так как p делитель  k^4 +12*k^2+12 и k^3+9k, то p должно быть делителем и 3*k^2 + 12.
То есть p делитель k^3+9k и 3*k^2 + 12.
Далее, заметим, что p = 3 подходит. При p = 3, существует k = 3, при котором выполняется условие задачи.
Если p простое и не равно 3, то можно поделить второе число на 3 (p делитель 3*k^2 + 12 и p<>3, следовательно p делитель k^2+4).
Получим, что p делитель k^3+9k и k^2 + 4.
Разложим k^3+9k = k (k^2+4) + 5k
Так как p делитель k^3+9k и k^2 + 4, то p делитель и 5k.
Значит, p общий делитель 5k и k^2+4.
Заметим, что p = 5 подходит. При p = 5, k =1 и выполняется условие задачи.
Если p простое и не равно 5, то т.к. p делитель 5k, то p делитель k.
Тогда p - делитель k и k^2+4. 
Аналогично раскладываем k^2 + 4 = k* k + 4. Отсюда следует, что p должно быть делителем 4. То есть p может равняться 2. При p=2, k=2 условие задачи выполнено.
После очередного разложения у нас осталось два числа k и 4. Общий простой делитель p=2 мы уже рассмотрели.

Итак, всего есть три простых p: p=5, p=3, p = 2. Тогда ответ: наибольшее простое p = 5.
 
4,5(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ