Пересечение графика графика функции с осью Ox означает, что в этой точке значение функции равно нулю. Значит, чтобы решить задачу, нужно просто подставить координаты каждой точки в каждую формулу, задающую каждую функцию. Если в результате получится ноль, то данная точка является общей для графика данной функции и оси Ox, если получится число отличное от нуля, то не является.
а) y=x²-3x+2 M(-1;0) x²-3x+2 = (-1)² - 3*(-1)+2 = 1+3+2 = 6 ≠ 0 точка M не является общей N(1;0) x²-3x+2 = 1² - 3*(-1)+2 = 1-3+2 = 0 точка N общая K(2;0) x²-3x+2 = 2² - 3*2+2 = 4 - 6+2 = 0 точка K общая P(5;0) x²-3x+2 = 5² - 3*5+2 = 25-15+2 = 12 ≠ 0 точка P не является общей б) y=x²-4x-5 M(-1;0) x²-4x-5 = (-1)² - 4*(-1) - 5 = 1+ 4 - 5 = 0 точка M общая N(1;0) x²-4x-5 = 1² - 4*1 - 5 = 1- 4 - 5 = -8 ≠ 0 точка N не является общей K(2;0) x²-4x-5 = 2² - 4*2 - 5 = 4 - 8 - 5 = -9 ≠ 0 точка K не является общей P(5;0) x²-4x-5 = 5² - 4*5 - 5 = 25 - 20 - 5 =0 точка P общая
в) y=x²+2x+1 M(-1;0) x²+2x+1 = (-1)² + 2*(-1) +1 = 1 - 2 +1 = 0 точка M общая N(1;0) x²+2x+1= 1² + 2*1 + 1 = 1+ 2 + 1 = 4 ≠ 0 точка N не является общей K(2;0) x²+2x+1 = 2² + 2*2 + 1 = 4 +4+1 = 9 ≠ 0 точка K не является общей P(5;0) x²+2x+1 = 5² + 2*5 + 1 = 25 +10+1 = 36 ≠ 0 точка P не является общей
В решении.
Объяснение:
По теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Выбрать прямоугольные треугольники:
1) (3√2)² = 9*2 = 18; (2√2)² = 4*2 = 8; (√26)² = 26;
18 + 8 = 26, является.
2) (√3)² = 3; (√11)² = 11; (√14)² = 14;
3 + 11 = 14, является.
3) (√19)² = 19; 2² = 4; (√23)² = 23;
19 + 4 = 23, является.
4) (2√11)² = 4*11 = 44; (√30)² = 30; (√15)² = 15;
30 + 15 ≠ 44, не является.
5) (√11)² = 11; (2√7)² = 28; (√17)² = 17;
11 + 17 = 28, является.
6) (2√3)² = 12; 6² = 36; (2√6)² = 24;
12 + 24 = 36, является.
7) (√14)² = 14; (√15)² = 15; (√23)² = 23;
14 + 15 ≠ 23, не является.