Дан тупоугольный треугольник ABC. Точка пересечения D серединных перпендикуляров сторон тупого угла находится на расстоянии 25,4 см от вершины угла B. Определи расстояние точки D от вершин A и C.
Пусть боковая сторона трапеции будет x, а высота трапеции - h.
Площадь трапеции (любой) S равна произведению полусуммы оснований на высоту. То есть,
S = 1/2*(a+k)*h
Выразим высоту h через x и угол alpha (угол при основании трапеции):
h = x*sin(alpha).
Очевидно, что длина основания равна (см. рис.):
a = x * cos(alpha) + k + x * cos(alpha) = 2 * x * cos(alpha)
Выразим отсюда x:
x = (a-k)/(2*cos(alpha))
Подставим х в формулу для высоты:
h = 1/2*(a-k)*sin(alpha)/cos(alpha) = 1/2*(a-k)*tg(alpha)
Возвращаемся к формуле для площади и подставляем в нее h:
S = 1/2*(a+k)*1/2*(a-k)*tg(alpha)
Поскольку (a+k)*(a-k) = a^2-k^2, то
S = 1/4*(a^2-k^2)*tg(alpha) <- ответ :)
p.s. 1/4 = 0.25
Задача 14.
Воспользуемся результатами предыдущей задачи :). alpha - угол при __большем__ основании.
Высота трапеции h = a*sin(alpha) (теперь у нас x = a просто).
Тогда площадь трапеции S будет равна (приводим подобные члены, выносим a^2 за скобки и сокращаем 2):
S = 1/2*(a + a*cos(alpha) + a + a*cos(alpha))*a*sin(alpha) = a^2*(1+cos(alpha))*sin(alpha)
Однако, в этой задаче в отличие от предыдущей alpha - это угол при меньшем основании, а не при большем. Для того, чтобы в полученной формуле перейти к углу к углу при меньшем основании, надо вспомнить, что cos(180-alpha) = -cos(alpha). Сумма углов в равнобедренной трапеции при меньшем и большем основаниях равна 180 градусов.
Тогла получаем ответ: S = a^2*(1-cos(alpha))*sin(alpha), alpha - угол при меньшем основании, как и требуется в задаче.
(2+√5) = 1/8 + 3√5/8 + 15/8 + 5√5/8 = (1/2 + √5/2)³ = (1 + √5)³/8
(2 - √5) = 1/8 - 3√5/8 +15/8 - 5√5/5 = (1/2 - √5/2)³ = (1 - √5)³/ 8
∛(2 + √5) + ∛(2 - √5) = ∛(1 + √5)³/2³ + ∛(1 - √5)³/2³ = (1 + √5)/2 + (1 - √5)/2 = 1/2 - √5/2 + 1/2 + √5/2 = 1
ответ ОДИН
сделаем по другому
a = 2 + √5
b = 2 - √5
∛(2 + √5) + ∛(2 -√5) = c
∛(a*b) = ∛((2 + √5)(2 - √5)) = ∛(-1) = -1 (формула 1)
a + b = 2 + √5 + 2 - √5 = 4 (формула 2)
∛a + ∛b = c
∛a = c - ∛b (возводим в куб) (формула 3)
a = c³ - 3c²∛b + 3c∛b² - b
c³ = a + 3c²∛b - 3c∛b² + b = a + b + 3c∛b(c - ∛b) ={ по формуле 2 и 3} = 4 + 3c∛b*∛a = {формула 1} =4 - 3c
c³ + 3c - 4 = 0
c³ + c² + 4c - c² - c - 4 = 0
c²(c - 1) + c(c -1) + 4(c-1) = 0
(c - 1)(c² + c + 4) = 0
вспоминаем что ∛(2 + √5) + ∛(2 -√5) = c
первая скобка c = 1
вторая скобка c² + c + 4 = 0 D=1 - 4*4 = -15 дискриминант отрицательный, действительных решений нет (2 комплексных)
ответ 1