Дан тупоугольный треугольник ABC. Точка пересечения D серединных перпендикуляров сторон тупого угла находится на расстоянии 42,8 см от вершины угла B. Определи расстояние точки D от вершин A и C. DA= см DC= см памогите
Точка D является центром окружности, описанной около треугольника ABC, а точки A, B и C принадлежат этой окружности (Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанной окружности), следовательно, отрезки DA, DB, DC являются радиусами одной и той же окружности и равны между собой.
Если прямая (графиком является прямая) пересекает ось Х то координата У=0, подставим в уравнение 0=1/9х-4 -1/9х= -4 Х= -4:(-1/4)= -4*(-4)=16 А(16;0) координаты точки пересечения.
У= -2х+6 (4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество 2= -2*4+6 2= -2 не принадлежит (-3;0) 0= -2*(-3) +6 0=6+6 0=12 не принадлежит
(3;1) 1= -2*3+6 1=-6+6 1=0 не принадлежит
У=16х-63. К1=16 У= -2х+9. К2= -2 Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять 16х-63= -2х+9 16х+2х=9+63 18х=72 Х=4 это координата Х подставим в любое уравнение и найдём координату У
У= -2*4+9= -8+9=1 С (4;1) Координаты точки пересечения.
Если прямая (графиком является прямая) пересекает ось Х то координата У=0, подставим в уравнение 0=1/9х-4 -1/9х= -4 Х= -4:(-1/4)= -4*(-4)=16 А(16;0) координаты точки пересечения.
У= -2х+6 (4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество 2= -2*4+6 2= -2 не принадлежит (-3;0) 0= -2*(-3) +6 0=6+6 0=12 не принадлежит
(3;1) 1= -2*3+6 1=-6+6 1=0 не принадлежит
У=16х-63. К1=16 У= -2х+9. К2= -2 Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять 16х-63= -2х+9 16х+2х=9+63 18х=72 Х=4 это координата Х подставим в любое уравнение и найдём координату У
У= -2*4+9= -8+9=1 С (4;1) Координаты точки пересечения.
42,8 см.
Объяснение:
Точка D является центром окружности, описанной около треугольника ABC, а точки A, B и C принадлежат этой окружности (Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанной окружности), следовательно, отрезки DA, DB, DC являются радиусами одной и той же окружности и равны между собой.