если все числа целые и периметр = 5, то стороны трапеции 1, 1, 1 и 2.
т.е. это равнобокая трапеция, у которой углы при основаниях равны.
Пусть трапеция АВСD, АВ и СD - бока =1 каждая, ВС - малое основание =1, AD - большое основание =2.
Из точки В опустим высоту BH
Рассмотрим полученный треугольник АВН
АВ=1
АН = (AD-ВС)/2=0,5
косинус угла А = АН/АВ = 0,5
следовательно, угол А=60градусов.
Угол D = углу А, т.к. трапеция равнобокая
следовательно сумма углов при большем основании (т.е. А и D) = 120
Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.