М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Angelina000477
Angelina000477
20.01.2021 01:13 •  Алгебра

Сутегінің көрсеткіші дегеніміз не?

👇
Ответ:
linapetrenko
linapetrenko
20.01.2021

ол жай ойыншық внплщдрдршанчнвң үшін бұлай жаза бересің бе апки жарайды апки жарайды деп қабыл болып тұр осы группаға қосыңызшы міні жоқ

4,6(81 оценок)
Открыть все ответы
Ответ:
biersacknikita9
biersacknikita9
20.01.2021
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения[⇨], системы линейных уравнений[⇨], среди основных инструментов, используемых в линейной алгебре — определители, матрицы[⇨], сопряжение. Теория инвариантов[en] и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры[1]. Такие объекты как квадратичные и билинейные формы[⇨], тензоры[⇨] и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Линейная алгебра обобщена средствами общей алгебры, в частности, современное определение линейного (векторного) пространства[⇨] опирается исключительно на абстрактные структуры, а многие результаты линейной алгебры обобщены на произвольные модули над кольцом. Более того, методы линейной алгебры широко используются и в других разделах общей алгебры, в частности, нередко применяется такой приём, как сведение абстрактных структур к линейным и изучение их относительно простыми и хорошо проработанными средствами линейной алгебры, так, например, реализуется в теории представлений групп[⇨]. Функциональный анализ возник как применение методов математического анализа и линейной алгебры к бесконечномерным линейным пространствам, и во многом базируется на методах линейной алгебры и в дальнейших своих обобщениях. Также линейная алгебра нашла широкое применение в многочисленных приложениях (в том числе, в линейном программировании[⇨], в эконометрике[⇨]) и естественных науках (например, в квантовой механике[⇨]).
4,4(17 оценок)
Ответ:
VerochkaL86V
VerochkaL86V
20.01.2021
Все просто :)

смотри последние цифры: 9 * 1^n + 2 * 1^n = 9 + 2 = 1
таким образом, ответ заканчивается на 1, значит это либо А, либо Д.

ответ А и Д по длинне одинаковый, но если предположить что ответ А верный, то он должен быть на 1 знак длиннее (так как при сложении 9 и 2 будет 11).

Вывод - правильный ответ Д



тут мне подсказали, что в задании, мол, ошибка и там 20 единиц везде.
тогда, конечно, ответ А, но решается задача легко и без калькулятора:
выносим за скобки все 20-ть единиц, будет 1111111 * (9 * 111...111 + 2) =
111...111 * (999...999 + 2) = 111...111 * (1000...001) = 11111...1111
4,4(42 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ